. 130: 63 LIBRARY UNIVERSITY OF CALIFORNIA DAVIS State of California THE RESOURCES AGENCY epartment of Water Resources BULLETIN No. 130-63 # HYDROLOGIC DATA: 1963 VOLUME III: CENTRAL COASTAL AREA SEPTEMBER 1965 HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources LIBRARY UNIVERSITY OF CALIFORNIA ERRATA # ELECTRICAL CONDUCTANCE DAILY MEAN ALAMEDA CREEK NEAR NILES (STA 73) 1963 # ELECTRICAL CONDUCTANCE DAILY READINGS AT 1300 HOURS BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT (STA 207) 1963 # State of California THE RESOURCES AGENCY ## Department of Water Resources BULLETIN No. 130-63 **HYDROLOGIC DATA: 1963** VOLUME III: CENTRAL COASTAL AREA SEPTEMBER 1965 HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources #### ORGANIZATION OF BULLETIN NO. 130 SERIES Volume I - NORTH COASTAL AREA Volume II - NORTHEASTERN CALIFORNIA Volume III - CENTRAL COASTAL AREA Volume IV - SAN JOAQUIN VALLEY Volume V - SOUTHERN CALIFORNIA #### Each volume consists of the following: #### TEXT and Appendix A - CLIMATE Appendix B - SURFACE WATER FLOW Appendix C - GROUND WATER MEASUREMENTS Appendix D - SURFACE WATER QUALITY Appendix E - GROUND WATER QUALITY #### TABLE OF CONTENTS | | | | Page | |---------------|---|---|------| | ORGANIZATION | OF BULLETIN NO. 130 SERIES | • | ii | | AREA ORIENTAT | TION MAP | • | iii | | LETTER OF TRA | NSMITTAL | • | vii | | ORGANIZATION. | | • | ix | | ACKNOWLEDGMEN | TTS | • | х | | | CHAPTER I. HYDROLOGIC CONDITIONS, 1962-63 | | 1 | | California - | Statewide | • | 2 | | Central Coast | al Area | • | 4 | | | CHAPTER II. DATA COLLECTION ACTIVITIES | | 10 | | Climate | | • | 10 | | Surface Water | Flow | • | 11 | | Ground Water | Measurement | • | 11 | | Surface Water | Quality | • | 12 | | Ground Water | Quality | • | 14 | | | FIGURES AND TABLES | | | | Figure 1 | Water Year Precipitation in Percent of Normal, October 1, 1962 - September 30, 1963 | • | 3 | | Table 1 | Ground Water Level Conditions in the Central Coastal Area, Spring 1963 | • | 7 | | Table 2 | Summary of Ground Water Data Collected in the
Central Coastal Area, July 1, 1962 - June 30, 1963 | | 13 | #### APPENDIXES A Climate Page A-1 | В | Surface Water Flow | B-1 | |-----------|---|-----| | С | Ground Water Measurement | C-1 | | D | Surface Water Quality | D-1 | | E | Ground Water Quality | E-1 | | | PLATES | | | | (Plates are bound at end of report) | | | Plate No. | | | | 1 | Surface Water Stations in the Central Coastal Area | | | 2 | Ground Water Basins or Units in the Central Coastal A | rea | | 3 | Fluctuation of Water Level in Wells
North Coastal Region | | | 4 | Fluctuation of Water Level in Wells
San Francisco Bay Region | | | 5 | Fluctuation of Water Level in Wells
Central Coastal Region | | | 6 | Status of Sea-Water Intrusion
Santa Clara Valley East Bay Area | | | 7 | Climatological Stations in the Central Coastal Area | | ### ARTMENT OF WATER RESOURCES DX 388 June 24, 1965 Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California #### Gentlemen: The Bulletin No. 130 series of reports incorporates data on surface water, ground water, and climate previously published annually in Bulletins No. 23, 39, 65, 66, and 77. With the inauguration of the new series, publication of the earlier reports is suspended. Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes and appendixes. This report is Volume III, "Central Coastal Area". It includes a text which summarizes hydrologic conditions in this part of California during the 1963 water year (October 1, 1962 through September 30, 1963) and five appendixes of detailed hydrologic data: Appendix A, "Climate", Appendix B, "Surface Water Flow", Appendix C, "Ground Water Measurement", Appendix D, "Surface Water Quality", and Appendix E, "Ground Water Quality". The collection and publication of data such as is contained in Bulletin No. 130 is authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the Water Code of the State of California. The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies, in order to satisfy specific needs of this State. Bulletin No. 130 is designed to present useful, comprehensive, accurate, timely hydrologic data to the public. Collection of much of the data presented has been possible only because of the generous assistance of other agencies, private organizations and individuals. Without the data supplied by these people, Bulletin No. 130-63 should have been much less the valuable tool it is today. Sincerely yours, · Steine Director # STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES EDMUND G. BROWN, Governor HUGO D. FISHER, Administrator, The Resources Agency WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer JOHN M. HALEY, Acting Assistant Chief Engineer - - - - 0 - - - - #### BAY AREA BRANCH | Dia inchi | |---| | Charles A. McCullough | | Vernon Bengal Chief, Water Supply and Quality Section | | | | Activities covered by this report were under the supervision of | | Glenn R. Peterson Supervisor, Water Supply Unit | | | | | | Assisted by | | · · | | John C. Etchells | | John S. Bartok | | Larry K. Gage Assistant Civil Engineer | | Jacob A. Vigil | | Lloyd J. Grant | Reviewed and coordinated by Division of Resources Planning Data Coordination Section #### ACKNOWLEDGMENTS The Department of Water Resources gratefully acknowledges the assistance and contributions of the many public agencies, private organizations, and individuals whose cooperation greatly facilitated the preparation of this bulletin. Special mention is made of the following agencies: #### Federal United States Geological Survey United States Bureau of Reclamation United States Weather Bureau United States Public Health Service #### State California Department of Public Health California Disaster Office #### Local Alameda County Flood Control and Water Conservation District Alameda County Water District Campbell Water Company Cupertino, City of Gilroy, City of Mendocino County Monterey County Flood Control and Water Conservation District Mountain View, City of Napa County North Los Altos Water Company Pacheco Pass Water District Palo Alto, City of San Benito County San Jose Water Works and Water Conservation District Santa Clara, City of Santa Clara County Flood Control and Water Conservation District Santa Clara Valley Water Conservation District Santa Cruz County Solano County Sonoma County Flood Control and Water Conservation District South Santa Clara Valley Water Conservation District Stanford University Sunnyvale, City of Watsonville, City of San Luis Obispo County Flood Control #### CHAPTER I #### HYDROLOGIC CONDITIONS, 1962-63 California is an area that is unique in many respects. Its climate has always been exceptional and the range of land forms within the State sets it apart from neighboring areas. California has often been described as being set apart or isolated by features that prevail over wide areas adjoining the State. Perhaps, it would be more appropriate to consider the State as a link between dissimilar regions rather than isolated by them. California does, in fact, span all the dissimilarities of climate and topography from parched Death Valley to the marshy tidelands of the Pacific and the rain forests of northwestern California. California climate is fostered by a balance between the slow forces of geology and the turbulent storms born of the Pacific Ocean. The massive walls of the Rocky Mountains and the Sierra Nevada protect the State from all but a few thrusts of the dry, cold, polar continental air masses. Maritime air masses, originating far out in the Pacific, receive some impetus and direction from wind patterns of the troposphere and move toward the California Coast. California lies in a transition zone between the prevailing westerlies that blow across the North Pacific and a calm high pressure zone, the horse latitudes, in the vicinity of 30 degrees north latitude. The horse latitudes, just south of California, buffer the State from many tropical storms which originate further to the south so that the north coast of California is crossed by more storms than the south coast. The Sierra Nevada and Cascade Mountains, along the eastern border of the great central valley, receive much of their precipitation by orographic lifting of the maritime air masses. The interior lands of Southern California are shielded from maritime air masses by the Transverse Ranges and the northerly extension of the Peninsula Range. #### California - Statewide Average values, which sum up annual conditions for the whole State, show the 1962-63 water year to have been about normal. A closer look at this apparent normality shows a series of extreme conditions which in combination resulted in nearly normal averaged values. Figure 1, showing the water year precipitation in percent of normal, indicates that normal annual precipitation amounts were recorded in the latitude of San Luis Obispo and Bakersfield. Recorded annual precipitation south of that latitude was as low as 50 percent of normal in the vicinity of San Diego and north of the latitude rose as high as 150 percent of normal in the mountains along the northern boundary of the State. During 1962-63, even these annual
precipitation values were composed of extremes. In mid-October a series of storms drenched Northern California, Oregon, and Washington. Rivers in Northern California were near the flood level and the Feather River at Oroville reached the highest October stage of record, inundating construction work at the Oroville damsite. Southern California stayed dry. A midwinter drought followed, setting new records for lack of precipitation and for continuous days of fog in the Central Valley. Again, Southern California was dry. The drought was broken by a three-day downpour at the end of January. Flood conditions prevailed again in Northern California and some areas, particularly the upper Yuba River basin, suffered from serious floods. Much of Southern California received moderate amounts of rain at this time. During April, Northern California was covered by a series of storms; precipitation was moderate, but continued for almost two weeks. The April precipitation, along with a record late season snowfall during May, largely in the Northern Sierras, built up snowpacks and assured a normal water supply during the summer. Southern California gained some precipitation but had a less than normal wet season, which extended the dry trend that has prevailed in the southern part of the State since 1944. Understandably, other hydrologic features showed abnormal responses. Streamflows alternated between extreme highs and extreme lows, but were about normal during the summer. With the recurring threat of floods, operation of reservoirs was difficult, yet the amount of water stored in reservoirs at the end of the water year was greater than year-end storage during most preceding years. In Southern California both surface runoff and reservoir storage were below normal. Ground water conditions followed the pattern of precipitation. In the northern part of the State, the amount of water stored in the ground water basins generally increased. Because of the time distribution of precipitation, the increase of stored ground water was less than it would have been if the distribution was more uniform. Throughout Southern California, where precipitation was well below normal, ground water levels continued to drop. #### Central Coastal Area The Central Coastal Area, as delineated on the "Area Orientation Map", (frontispiece) includes all or parts of 14 counties extending from San Luis Obispo County on the south to Mendocino County on the north. Nearly half of the State's 1,190-mile open coastline is within the report area. It embraces the major portion of the Coast Ranges, which consists of a series of mountain ranges paralleling the coast separated by many fertile valleys. The San Francisco Bay system is a central and unique feature. Within the area is the metropolitan complex known as the Bay area. The Bay area is the second largest metropolitan area in the western half of the United States. Surface water in the southern and central portions of the Central Coastal Area is highly developed. Extensive use is made of the numerous complex ground water basins and surface water is imported to the area. Several local ground water basins are deliberately recharged with stored or imported surface water. The basins are highly important to local economies and to the economy of the State. Consequently, ground water is emphasized in this bulletin. In the Central Coastal Area average annual precipitation varies from areas of abundant rainfall along the coast and in the region north of San Francisco (up to 80 inches) to areas of very little rainfall in the southern Salinas River Valley (as low as 10 inches). During the 1962-63 season, which was noteworthy for its excesses in wet and dry periods, the final average result was an above normal precipitation for the report area with some areas recording 160 percent of normal. The quality of surface waters in the report area is mostly good with the best waters draining the mountains adjacent to the coast. During the 1962-63 season the concentrations of dissolved solids generally decreased because of above normal precipitation and the corresponding increase in runoff. Ground water occurs under diverse conditions and in a variety of rock types. Most of the readily available water exists in subsurface reservoirs composed of unconsolidated alluvial materials which underlie intermontane valley floor areas. In many areas, the unconsolidated alluvial deposits are underlain and bordered by relatively extensive deposits of older, more consolidated alluvial materials which are also water bearing and act as recharge areas for the ground water reservoirs. Materials of lesser importance with respect to production of ground water in the Central Coastal Area but often of local significance are: The sedimentary materials which were deposited in lakes, lagoons, or as sand dunes; shallow water marine sediments from which sea water has been flushed; and some types of volcanic rocks. The ground waters are good to excellent in mineral quality and are suitable for most beneficial uses, except in localized areas where waters contain high concentrations of one or more of the following minerals: chlorides, sulfates, nitrates, sodium, and boron. The ground waters are bicarbonate and vary from moderately hard to very hard. Depths to water in wells range from about 350 feet to "flowing". The raw ground water level data are made more meaningful when summarized into basin averages. Table 1, "Ground Water Level Conditions in the Central Coastal Area", presents average depths to ground waters and average changes by basin and region from the spring of 1962 to the spring of 1963. During the spring of 1963 average depths to water in the monitored basins ranged from about 4.5 feet in Alexander Valley to about 123 feet in the Santa Clara Valley. The overall average depth to water in the basins monitored was 50.6 feet which was a decrease of 2.7 feet from the 1962 average. Significant rises of 23.4 feet and 2.0 feet occurred in the South Santa Clara County and San Benito County units of Gilroy-Hollister Valley, respectively. These rises were reversals of downward trends of the previous three years during which water levels had dropped approximately 39 feet in South Santa Clara # TABLE 1 GROUND WATER LEVEL CONDITIONS IN THE CENTRAL COASTAL AREA SPRING 1963 | Ground Water Basin
or Unit | Basin
Number | : Average Change : in Ground Water Level $\underline{1}/$: :Spring 1962 to Spring 1963 (in feet): | Average Depth
to Ground Water
Spring 1963 (in feet | |---------------------------------|--------------------|--|--| | | | Region 1 | | | Potter Valley | 1-14.00 | 0.0 | 6.6 | | Ukish Valley | 1-15.00 | -1.1 | 5.7 | | Sanel Valley | 1-16.00 | -0.6 | 5.3 | | Alexander Valley | 1-17.00 | +0.6 | 4.5 | | Santa Rosa Valley | 1-18.00 | | | | Santa Rosa Area | 1-18.01
1-18.02 | +2.3
-0.2 | 13.0
12.5 | | Healdsburg Area | | | | | Lower Russisn River Valley | 1-98.00 | -2.4 | 9.4 | | | Region 1 Ave | rages: 2/ -0.6 | 9.6 | | | | Region 2 | | | Petaluma Vailey | 2-1.00 | +1.3 | 23.2 | | Napa-Sonoma Valley | 2-2.00 | | | | Napa Valley | 2-2.01 | +0.9 | 12.0 | | Sonoma Valley | 2-2.02 | +1.1 | 16.5 | | Suisun-Fairfield Valley | 2-3.00 | +5.3 | 6.8 | | Ygoacio Valley | 2-6.00 | +1.1 | 15.1 | | Santa Clara Valley | 2-9.00 | | | | East Bay Area
South Bay Area | 2-9.01
2-9.02 | +2.6
+12.6 | 59.3
123.2 | | · | | | | | Livermore Valley | 2-10.00 | +3.3 | 63.5 | | Half Moon Bay Terrace | 2-22.00 | +3.4 | 18.7 | | San Gregorio Valley | 2-24.00 | -0.6 | 9.1 | | Pescadero Valley | 2-26.00 | +1.4 | 6.1 | | | Region 2 Ave | rages: 2/ +5.5 | 53.3 | | | | Region 3 | | | Soquel Valley | 3-1.00 | -0.8 | 65.6 | | Pajaro Valley | 3-2.00 | +2.2 | 60.7 | | Gilroy-Hollister Valley | 3-3.00 | | | | South Santa Clara County | 3-3.01 | +23.4 | 47.3 | | San Benito County | 3-3.02 | +2.0 | 76.9 | | Salimas Valley | 3-4.00 | +0.1 | 55.2 | | Carmel Valley | 3-7.00 | +0.7 | 16.3 | | West Santa Cruz Terrace | 3-26.00 | No measurements in 1963 | | | | Region 3 Ave | rages: 2/ +1.5 | 56.9 | | Centra | l Constal Area Ave | | 50.6 | ^{1/ 4} indicates rise in water level. - indicates decline in water level. ^{2/} Region Averages = ≤ (basin average x basin area) € basin areas ^{3/} Central Coastal Area Averages ≈ € (region average x region area) € region areas County and 9 feet in San Benito County. Sea-water intrusion continued to be a problem in portions of Salinas and Pajaro Valleys and in the Niles Cone in Alameda County where ground water levels have remained below sea level. During the period from July 1, 1962 through June 30, 1963, there were no significant changes in mineral concentrations. Some localized poor quality ground water, probably from deep-seated origin, is found in the northern portion of the Central Coastal Area. Data collected in portions of Petaluma Valley, Napa-Sonoma Valley and Suisun-Fairfield Valley, where ground water has been degraded by brackish waters from the bays, indicate no further degradation. Chloride concentrations in the Centerville aquifer in Alameda County decreased (Plate 6). This decrease was probably a direct result of above normal precipitation and deliberate recharge of the ground water basin with South Bay Aqueduct water by Alameda County Water District. Boron concentrations in excess of that recommended for irrigation of some crops were present in water from some wells in the following areas: - The vicinity of Newark in Alameda County and the proximity of the Mission fault. - Southern and central portions of Petaluma Valley adjacent to Petaluma Creek. - 3. East side of Napa Valley. - 4. Eastern portion of Santa Clara Valley, especially in the Penitencia Creek area. - 5. Northern and eastern portions of Livermore Valley. - 6. Eastern portion of Hollister Valley. A
number of wells drilled into the volcanic rocks on the east side of Napa Valley produce highly mineralized water, or water having undesirable taste or odor. High nitrate concentrations occur in localized areas in Livermore Valley. Many wells in Clayton and Ygnacio Valleys yield water which, unless softened, is undesirable for domestic and some industrial uses because of extreme hardness. Some of the wells in Ygnacio Valley also yield water having concentrations of sulfates and nitrates exceeding amounts normally recommended as limits for drinking water. Ground water samples collected in the sea-water intruded areas of Pajaro and Salinas Valleys contained about the same chloride concentrations as the samples collected the previous year. Water with nitrate concentrations above the normally recommended limit for drinking water is present in a few wells located near Monterey Bay in Pajaro Valley. Wells in the vicinity of Hollister yield water containing high concentrations of total dissolved solids, chlorides, sulfates, nitrates, and boron. #### CHAPTER II #### DATA COLLECTION ACTIVITIES The Department of Water Resources, in cooperation with federal, state, and local agencies, as well as with the generous and public-spirited assistance of many individuals, has gradually developed a continuing program of basic hydrologic data collection. This continuity enables systematic and orderly handling, filing, and publication of the data for all uses both now and in the future. The data collection activities involve the maintenance of a network of stations adequate to provide reliable, meaningful, representative and needed information. Water samples or water measurements are taken at these stations, chemical analyses of the samples are made, and the data are compiled, analyzed, summarized, and published. These data include information on climate, surface water flows, tidal stages, ground water levels, and on the chemical quality of surface and ground waters. The climate data include precipitation, air temperature, wind movement, and evaporation. #### CLIMATE The climatology station network shown on Plate 7, "Climatological Stations in the Central Coastal Area", was established by the U. S. Weather Bureau and the Department of Water Resources. The Department supplements the Weather Bureau network of 141 stations with a network of 74 selected stations which are and have been operated by individuals, private industry, and governmental agencies. Data from these 215 stations are tabulated in Appendix A of this report. #### SURFACE WATER FLOW The four surface water stations shown on Plate 1 are operated by the Department of Water Resources. The Department also cooperates with the United States Geological Survey in the operation of 62 of the 115 stations operated by that agency in the area covered by this report. Also, the United States Coast and Geodetic Survey operates two tide stations in the area. The United States Geological Survey publishes data from the 115 stations in its water supply papers. There are a number of surface water stations operated by local agencies for local purposes from which data are not routinely obtained by the Department. #### GROUND WATER MEASUREMENT The Department cooperates with the U. S. Geological Survey and many local agencies for the systematic observation of ground water levels. Wells at which water level measurements are made in the Central Coastal Area number approximately 1,700 of which 213 are presented in Appendix C of this report. These 213 wells were selected as representative of wells in the respective ground water basins or units. The wells were selected on the basis of a number of factors such as, geographical density of one or two wells per township; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, aquifer represented; and availability of a geologic log, mineral analyses, and production records. The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made with an air line and gauge or an electric sounder. Field work was performed by local cooperators, the U. S. Geological Survey, and department personnel. The Department has full responsibility for reviewing, editing, processing, and publishing ground water level data. An electronic computer program has been developed to perform a part of the processing and tabulating. Ground water basins or units in the Central Coastal Area are shown on Plate 2. The number of wells measured in these areas and the measuring agency are shown in Table 2. Water level fluctuations are depicted graphically on hydrographs of 22 wells distributed among significant basins of the Area. These wells were selected insofar as possible as representative of their respective basins or units. The hydrographs are presented in Plates 3 through 5 by region, basin, and well number. Maps showing lines of equal elevation of water in wells in Napa Valley, Suisun-Fairfield Valley, Livermore Valley, Santa Clara Valley (East Bay and South Bay Areas), Gilroy-Hollister Valley (South Santa Clara and San Benito Counties), Salinas Valley and Pajaro Valley are prepared regularly. These maps are on file with the Department. #### SURFACE WATER QUALITY Surface water was sampled and analyzed both by the Department of Water Resources and by the U. S. Geological Survey in cooperation with the Department. The data from these sampling activities are shown in Appendix D of this report. The appendix includes data from a network of basic monitoring stations, operational stations on the South Bay Aqueduct, and investigational stations. It includes all of the surface water quality data collected by this # TABLE 2 SUMMARY OF GROUND WATER DATA COLLECTED IN THE CENTRAL COASTAL AREA July 1, 1962 - June 30, 1963 | Ground Weter Basin
or Unit | : Beain
: Number | : Measuring or Sampling :
: Agency : | Number o | : Sampled | |---|-------------------------------|---|---------------------------|-----------| | | | REGION I | | | | Potter Valley | 1-14.00 | U. S. Geological Survey | 2 | | | Jkiah Valley | 1-15.00 | U. S. Geological Survey
Mendocino County | 3 | 10 | | Sao∉l Valley | 1-16.00 | U. S. Geological Survey
Mendocino County | 3 | 6 | | lexander Valley | 1-17,00 | U. S. Geological Survey
Department of Water Resources | 6 | 6 | | Santa Roaa Valley
Santa Roaa Area | 1-18.00
1-18.01
1-18.02 | U. S. Geological Survey Department of Water Resources U. S. Geological Survey Department of Water Resources | 3
7
4 | 20
3 | | Lower Russian River Valley | 1-98,00 | U. S. Geological Survey REGION 2 | 3 | | | Peteluma Valley | 2-1.00 | U. S. Geological Survey
Sonoma Couoty F. C. & W. C. D.
Department of Water Resources | 3 | 17
9 | | Nape-Sonoma Valley
Napa Valley | 2-2.00
2-2.01 | U. S. Geological Survey
Napa County
Department of Water Resources | 4
108 | 27 | | Sonoma Valley | 2-2.02 | U. S. Geological Survey
Sonoma County F. C. & W. C. D.
Department of Water Resources | 2 | 14 | | Suisun-Pairfield Valley | 2-3.00 | U. S. Geological Survey
Solano County
Department of Water Resources | 3
23
4 | 15 | | Pittaburg Plain | 2-4.00 | Department of Water Resources | | 3 | | Claytoo Valley | 2-5.00 | Department of Water Resources | | 8 | | Ygnacio Valley | 2-6.00 | Department of Water Resources | 5 | 7 | | Santa Clera Valley
East Bay Area | 2-9.00
2-9.01 | Alameda County Water District
Alameda County P. C. & W. C. D.
Department of Water Resources | 105
88 <u>1</u> /
3 | 46
24 | | South Bay Area | 2-9,02 | U. S. Geological Survey
Santa Clara Valley W. C. D. | 3
250 | 20 | | Livermore Valley | 2-10,00 | Alameda County F. C. & W. C. D. | 160 | 30 | | Half Mooo Bay Terrace | 2-22.00 | Department of Water Resources | 9 | | | San Gregorio Valley | 2-24.00 | Department of Water Resources | 5 | | | Peacedero Valley | 2-26.00 | Department of Water Resources REGION 3 | 7 | | | West Santa Cruz Terrace | 3-26.00 | Santa Cruz County | 7 | | | Soquel Valley | 3-1.00 | Santa Cruz County
Department of Water Resources | 5
2 | | | Pajaro Valley | 3-2.00 | Monterey County P. C. & W. C. D.
Sauta Cruz County
City of Watsonville
Department of Water Resources | 25
50
6
13 | 14 | | Gilroy-Hollister Valley
South Santa Clara County | 3-3.00
3-3.01 | South Santa Clara County W. C. D. Santa Clara Valley W. C. D. Department of Water Resources City of Cilroy | 25
16
17
4 | 11 | | San Beoito County | 3-3.02 | Pacheco Pass Water District and
Sao Benito County
Department of Water Resources | 90
3 | 14 | | Salinas Valley | 3-4.00 | Monterey County F. C. & W. C. D.
San Luis Obispo County | 393
51 | 70
6 | | Carmel Valley | 3-7.00 | Monterey County F. C. & W. C. D. | 33 | 5 | ^{1/} An additional 110 wells were measured during spring 1963. Department in the Central Coastal Area, except for data from investigational stations in the San Francisco Bay system below Antioch. The excluded data are specialized in nature and beyond the scope of this report. The stations for which data are reported in Appendix D are shown on Plate 1. #### GROUND WATER QUALITY During the year from July 1, 1962 through June 30, 1963, ground water samples were collected from 393 wells in the Central Coastal Area. These wells or stations were selected by the Department in the areas shown on Plate 2. Table 2 indicates the number of wells sampled in each basin and the sampling agency. The data from these stations are tabulated in Appendix E. Ground water is sampled and analyzed to provide information on the quality characteristics, to identify problem areas, to determine the quality trends,
and if possible, to identify the factors that control or affect the quality. Analyses made of ground water include mineral and radiological determinations. The frequency of sampling, types of analyses, and density of the station network depend largely on conditions in the monitored area. APPENDIX A CLIMATE #### CLIMATOLOGIC DATA This appendix contains station index, seasonal precipitation, monthly temperatures, and monthly evaporation tables. The data compiled are provided by governmental agencies, private industry and individuals. Symbols and abbreviations used in this appendix are: - C Data from recorder stations. - D Data unavailable for this report. - E Evaporation. - e Wholly or partially estimated. - M All or part of record missing. When used in place of an average monthly temperature value, more than 10 days of record are missing. - NR No record. - P Precipitation. - RB Beginning of record. - SS Observation at sunset. - T Temperature. - T Trace, an amount too small to measure. - V Observation time varied. #### Climatological Station Index Table A-1 includes the station name, number, and the county in which each station is located. The letter and first digit of the station number represent hydrographic area and unit. The remaining digits are assigned in accordance with alphabetic sequence. It also includes the observer's name, station location, and elevation of the station. The time of observation, beginning of record, and cooperator number complete the information on this table. The cooperator number indicates the source of the data. The cooperator numbers assigned are as follows: - 000 Private Cooperator - 403 Sonoma County Flood Control and Water Conservation District - 407 San Benito County - 411 Marin County - 413 Marin Municipal Water District - 414 Santa Clara Valley Water Conservation District - 418 Vallejo Water Department - 426 Santa Clara County Flood Control and Water Conservation District - 801 Pomology Department, U. C., Davis - 804 State Department of Beaches and Parks - 806 State Department of Water Resources - 808 State Division of Forestry - 809 State Division of Highways - 900 U. S. Weather Bureau - 901 Corps of Engineers, San Francisco District - 902 U.S. Air Force - 907 State Climatologist (unpublished USWB) - 909 U. S. Soil Conservation Service #### Seasonal Precipitation Table A-2 presents total monthly and annual precipitation in inches for the year from July 1, 1962 through June 30, 1963. #### Monthly Temperatures Table A-3 covers the same period and includes the maximum and minimum temperatures, the average of the daily maximum temperatures, the average of the daily minimum temperatures, and the average of the daily maximum and minimum temperatures recorded during the month. The temperatures are recorded in degrees Fahrenheit. #### Monthly Evaporation Table A-4 presents total evaporation during each month in inches, total wind movement during the month in miles, the monthly average of daily maximum and minimum water temperatures, monthly precipitation, the maximum air temperature, the minimum air temperature, the average minimum air temperature, and the average of the daily maximum and minimum air temperatures. Portions of these data are repetitions of data in Tables A-2 and A-3. These data are included herein because of their close connection with evaporation data. TABLE A-1 CLIMATOLOGICAL STATION INDEX | STATION NAME | STA
NUMBER | COUNTY | OBSERVER | LATITUDE | LONGITUOE | ELEV
IN
FEET | TOWNSHIP | RANGE | SECTION
40 ACRE
TRACT | 1 | IME
OF
RVATI | | ECORO
EGAN | | |---|---|--|---|--|---|-------------------------------------|--------------------------------|-------------------|---------------------------------|----------------------------|-----------------------|----------|--------------------------------------|---------------------------------| | Alamitos Perc. Pond
Alamo 1N
Almaden Reservoir
Angwin Pec. Union Col.
Arroyo Seco | 86 0053
E4 0064
86 0125
E3 0212
02 0322 | Sente Clara
Cootre Coeta
Saota Clare
Napa
Monterey | SCVWCD
Cuzzello
SCVWCD
Pecific Union Col
R. Billinge | 37 15 18
37 52
37 10 00
38 34 18
36 14 | 145 52 18
122 01
121 50 00
122 26 12
121 29 | 200
410
640
1815
800 | 1S
9S
8N | 5W | 9 P
1 Q
11 E
5 Q
36 | 9A
7A
8A
8P
C | 9A
7A
8P | | 1959
1957
1936
1939
1931 | 426
900
426
900
900 | | Atascadero HMS Atlas Road Ben Lomond Berkeley Berryessa IE (Toyon Ave.) | 03 0360-01
E3 0372
00 0674
E4 0693
E6 0706 | San Luie Obispo
Nopa
Senta Crus
Alameda
Sante Clara | J. Ellia
G. Dutrs
N. Shew
U. of Calif.
R. Hitchell | 35 27 30
38 25
37 05
37 52
37 23 | 120 38 24
122 15
122 06
122 15
121 50 | 940
1735
504
299
205 | 10S
1S | 4W
2W
3W | 26
25
9
23 P | 8A
C
SP
C
SP | 8A
5P
8P | | 1948
1940
1937
1887
1921 | 809
900
900
900
901 | | Big Sur State Park Black Mountein 2 SW Blakes Landing Boonville MMS Boooville-Ferrer | D4 0790
B6 0850
F9 0876
F8 0973
F8 0973-02 | Monterey
Santa Clare
Mario
Mandocino
Mendocino | Perk Ser. M. Incerpi R. Angress Div. of Highways J. Parrer | 36 15
37 18
38 11 42
39 01
39 00 45 | 121 47
122 10
122 55 00
123 22
123 22 10 | 240
2330
40
342
395 | | 3₩
.0₩
.4₩ | 30
36
13
2
2 | 8A
9A
8A
8A
9A | | | 1914
1943
1956
1936
1951 | 900
900
000
900
901 | | Boonville-Bell Valley
Bouchers Gap
Bradley
Bueca Vista
Burliogame | F8 0973-D4
D4 0998-27
D3 1034
D1 1170
E7 1206 | Meadocino
Monterey
Monterey
Sen Benito
San Mateo | E. Mathieco
B. Alexander
Div. of Porestry
A. Churchill
Burlingame | 39 01 30
36 21
35 52
36 46
37 35 | 123 17 30
121 51
120 48
121 11
122 21 | 1580
2050
540
1640
10 | 245 | 1E
18 | 33
24 P
8
27 R | 5P
8A
8A
C
4P | 4 P | 4P | 1960
1960
1946
1932
1946 | 000
000
900
900
900 | | Burton Ranch Buzzard Lagoon Caleverae Reservoir Calero Reservoir Calistoga | E4 1216
D1 1247
E5 1281
B6 1285
E3 1312 | Contra Coete
Santa Cruz
Alameda
Santa Clare
Nape | B. Stirton n. Nohrden O. McCerthy SCVWCD J. Schou | 37 52
37 02
37 29 12
37 10 48
38 35 | 122 05
121 50
121 49 06
121 45 48
122 35 | 530
1275
805
500
365 | 1S
10S
5S
9S
9N | 1E
26 | 9 M
26 N
24
4 E
36 | 8A
6P
7A
8A
7A | | | 1955
1959
1874
1958
1873 | 900
000
900
414
900 | | Cambrien Ferk Campbell Water Co Garmel Valley Cazadero Chittenden Pass | E6 1341-10
E6 1377-01
D4 1534
F9 1602
D1 1739 | Santa Clera
Santa Clara
Monterey
Sonoma
San Senito | SCVWCD
Campbell Water Co
A. Collins
R. Borotra
V. Haskin | 37 15 12
37 17
36 29
38 32
36 54 | 121 55 24
121 57
121 44
123 07
121 36 | 225
192
425
1040
125 | 8S
7S
17S
8N
12S | 1W
2E
2W | 12 E
35 C
5
13 | 7A
5P
5P
5P
8A | 5P | | 1962
1897
1957
1939
1945 | 414
000
900
900
900 | | Chittenden
Cienaga
Cloverdale 3 SSE
Cloverdale 11 W
Concord 3 E | 01 1739-01
01 1766
P9 1838
P9 1840
E4 1962 | Sents Cruz
San Benito
Sonoma
Sonoma
Contra Costa | N. Chedwell A. Smith J. Byrd F. Ornbaun H. Lee | 36 54 08
36 42 54
38 46
38 46
37 58 | 121 36 17
121 20 48
122 59
123 13
121 59 | 104
900
320
1820
200 | 14S
11N
11N | 68
LOW | 11 K
18 E
29 | 8A
8A
C
C
8A | 8.8 | | 1960
1950
1950
1939
1954 | 900
900
900
900 | | Conn Coyote Ozm-Lake Mendocino Coyote Reservoir Creet Ranch Crockett | E3 1976
P9 2105
E6 2109
O0 2159
E4 2177 | Nape
Mendocino
Sante Clara
Sente Cruz
Contra Costa | City of Neps
C.O.E.
SCVWCD
N. Nielson
C & R Sugar | 38 28 50
39 11
37 05 06
37 05 06
38 02 | 122 22 30
123 11
121 32 24
122 08 00
122 13 | 225
784
800
2640
12 | 7N
16N
10S
10S
3N | 4E
3W | 1 N
34 9 C
1 R
32 | 8A
8A
9A
8A | 8A
9A
8A | 8A
9A | 0
1960
1938
1948
1918 | 901
900
900
900
900 | | Davenport Del Monte Duttone Landiag Evergreen-Silver Ck. Rd. Fairfield | 00 2290
02 2362
E3 2580
E6 2919
E3 2933 | Sante Cruz
Mooterey
Neps
Sante Clare
Solano | P. Tacke USN School D. Steele R. Long Co. Surveyor | 37 01
36 36
38 12
37 19
38 15 | 122 12
121 52
122 18
122 02
122 03 | 273
46
20
340
15 | 10S
15S
4N
7S
5N | 18
4₩
2E | 32 Q
10
20 G
25 | 8A
C
8A
7A
C | 8A
8A | 8.8 | 1910
1911
1955
0
1940 | 900
900
900
000
900 | | Fairfield Police Station
Port Bregg
Fort Bragg Aviation
Port Ross
Preedom 8 NNW | E3 2934
P8 3161
P8 3164
P8 3191
01 3232 | Solago
Mendocino
Mendocino
Sonoma
Sente Crur | Police Dept.
Cal. West. RR
WB Observer
C. Call
Westminster | 38 15
39 27
39 24
38 21
37 03 | 122 03
123 48
123 49
123 15
121 49 | 19
80
61
116
1495 | 5N
18N
18N
8N
10S | 17W
18W
12W | 26
7
25
30 D
24 | 4P
8A
11P
6P
C | 4P
8A
11P
6P | |
1951
1895
1940
1874
1952 | 900
900
900
900
900 | | Fremont Pk. State Park
Gerber Ranch
Gilroy
Gilroy 8 NE
Gilroy 14 ENE | D1 3238-01
E5 3387
01 3417
D1 3419
D1 3422 | Sen Benito
Sante Clara
Sante Clara
Sente Clara
Sente Clara | L. Beavenue
P. Gerber
Pire Dist.
W. Kickham
S. Auser | 36 46 18
37 22 00
37 00
37 02
37 06 | 121 28 54
121 29 12
121 34
121 26
121 20 | 2500
2140
194
1050
1350 | 13S
6S
11S
10S
10S | 42 | 35
36 P
6
28
5 | 8A
8A
9A
C
8A | 8A
9A | | 1950
1912
1957
1942
1940 | 901
900
900
900
900 | | Gonzelee 9 ENE Greton Graton 1 W Green Valley Guadalupe Reservoir | D2 3502
P9 3577
P9 3578
E3 3612-01
E6 3681 | San Benito
Sonoma
Sonoma
Solano
Santa Clara | A. Bogue
L. Hallberg
B. Peruell
E. Marchall
SCVWCD | 36 33
38 25 54
38 26
38 17
37 12 | 121 18
122 51 48
122 53
122 10
121 53 | 2350
200
210
414
450 | 16S
7N
7N
5N
8S | 9W
9W
3W | 15
21
22
3
29 Q | C
7A
6P
8A
8A | 7A
6 P | | 1943
1928
1896
1893
1936 | 900
000
900
418
414 | | Guerneville Half Moon Bay 2 NNW Hamilton AFB Haywerd 6 ESE Healdsburg | F9 3683
E8 3714
E2 3734
E4 3863
F9 3875 | Sonoma
Sen Mateo
Mario
Alamede
Sonoma | J. Suttner
Dept. Agr.
Air Porce
M. Oreonao
Fire Dept. | 38 30
37 29
38 04
37 39
38 37 | 123 00
122 27
122 31
121 58
122 50 | 115
60
-2
925
101 | 8N
9S
3N
3S
9N | 5W
6W
1W | 25
19
28
19 | 8A
7A
C
C
C | 7A
C
6P | | 1939
1939
1934
1940
1877 | 900
900
900
900
900 | | Heeldsburg 2 E
Hernander 7 SE
Hollister
Hollister Coste
Hollister No. 2 | F9 3878
01 3928
01 4022
01 4022-10
01 4025 | Sonoma
San Benito
San Benito
San Benito
San Benito | W. Iverson
C. Akers
Hollister
DWR - L & WU
Rollister | 38 37
36 18
36 51
36 55 15
36 51 | 122 50
120 42
121 24
121 26 46
121 24 | 102
2765
285
170
284 | 9N
19S
12S
11S
12S | 5E | 6
32 P | 8A
C
5P
V
C | 5 P | v | 1943
1940
1874
1962
1938 | 900
900
900
806
900 | | Hollister 10 ENE
Nopland Largo Station
Inverses-Hery
Keilogg
Kentfield | 01 4035
F9 4100
F9 4277
F9 4480
E2 4500 | San Benito
Mendocino
Marin
Sonoma
Marin | E. Rubbell
C. Crewford
M. Mery
R. Eubinow
H. Huller | 36 55
39 01
38 05 24
38 40
37 57 | 121 14
123 07
122 51 06
122 40
122 33 | 3000
550
150
1800
90 | 12S
13N
3N
9N
1N | 9W | 9 8 | C
8A
12N
8A
9A | 5P
9A | | 0
1948
1951
1936
1888 | 900
900
000
900
900 | TABLE A-1 CLIMATOLOGICAL STATION INDEX | STATION NAME | STA
NUMBER | COUNTY | OBSERVER | LATITUDE | LDNGITUDE | ELEV
IN
FEET | TOWNSHIP | SECTION | 40 ACRE
TRACT | TIME
OF
OBSERVATION
P I E | RECORD
8 EGAN | | |--|---|--|---|---|--|--------------------------------------|------------------------|---|------------------|--|--------------------------------------|---------------------------------| | King City
Lafayette 2 NNE
Lagunitas Lake
La Honds
Lake Curry | 02 4555
E4 4633
F9 4652
E8 4660
E3 4677 | Monterey
Contra Costa
Marin
San Mateo
Solano | Div. of Forestry
R. Saobara
MMWD
J. Allen
J. Lynch | 36 12
37 55
37 56 48
37 19
38 21 1E | 121 08
122 06
122 35 42
122 16
122 07 18 | 320
540
785
670
396 | 1N 2
1N 7
7S 4 | | | 5P 5P
8A
C
6P
8A | 1887
1956
1881
1950
1926 | 900
900
413
900
418 | | Leroy Anderson Osm
Lexiagtoa Reservoir
Linn Rsach
Livermore Sewage Plant
Livermore 2 SSW | E6 4916
E6 4922
D3 4963
E5 4996
E5 4997 | Sants Clare
Sants Clara
San Luis Obispo
Alameda
Alameda | SCVWCD
SCVWCD
O. Linn
Livermore
H. Quaterman | 37 09 48
37 10 36
35 41 06
37 41 28
37 39 | 121 37 48
121 59 18
120 43 24
121 48 20
121 47 | 700
700
870
405
545 | 9S 1
26S 12
3S 1 | E 10
W 5
E 7
E 12
E 20 | K
J
F
A | 8A
8A 8A 8A
5P 5P
7A 7A 7A
7A 7A | 1950
1951
1925
1961
1871 | 414
414
000
000
900 | | Lockwood 2 N
Los Burros
Los Gatos
Los Gatos-Old Orchard Rd.
Los Gatos 4 SW | 03 5017
05 5120-03
E6 5123
E6 5123-04
00 5125 | Monterey
Honterey
Saots Clare
Sants Clare
Santa Clare | A. Weferling
O. Krenkel
Los Gstos
E. Roll
I. Miller | 35 58
35 52 42
37 14
37 14
37 11 | 121 05
121 23 30
121 57
121 55
122 02 | 1104
2673
428
285
2215 | 24S 5
8S 1
6S 1 | E 34
E 2
W 21
W 23
W 1 | P | 8A
8A
5P 5P
7A
9A | 1940
1957
1885
1963
1957 | 900
000
900
414
900 | | Mare Island Martinet 3 S Martiner 3 SSE Martiner Fire Station Hill Valley | E3 5333
E4 5371
E4 5372
E4 5377
E2 5647 | Solaco
Contra Costa
Contra Costa
Contra Costa
Marin | W. Cavenaugh N. Plummer C. Wasver Pire Dept. County Engr. | 38 06 00
37 58
37 58
38 01
37 53 48 | 122 16 12
122 08
122 06
122 08
122 31 36 | 52
225
280
26
10 | 2N 2
2N 2
2N 2 | W
W
W
W 31 | | C C
C
8A
9A 9A
8A | 1867
1941
1956
1891
1944 | 900
900
900
900
411 | | Monterey
Horgan Hill 2 E
Morgan Hill 6 WNW
Morgan Hill SCS
Morro Bay 3 N | D4 5795
E6 5844
E6 5846
D1 5853
D6 5869 | Monterey
Santa Clara
Santa Clara
Santa Clara
San Luia Obiapo | R. Johnson
T. Downer
N. Rose
Cons. Ser.
Std. Oil Co. | 36 36
37 08
37 09
37 08
35 25 | 121 54
121 37
121 46
121 39
120 51 | 335
225
660
350
670 | 9S 3 | E
E
E 28
E 12 | | SS SS
8A
C
C
C | 1878
1943
D
1945
1959 | 900
900
900
900
900 | | Nt. Dimblo North Gste Nt. Hamilton Mount Madonna Nt. Madonna Co. Park Mt. Tamelpaia 2 SW | E4 5915
E5 5933
D1 5973
D1 5973-11
E2 5996 | Contra Coata
Santa Clara
Santa Cruz
Santa Clara
Marin | Bch. & Pks.
WB Observer
J. Schell
W. Foss
Bch. & Pks. | 37 52
37 20
37 01
37 01
37 54 | 121 56
121 39
121 43
121 43
122 36 | 2100
4206
1800
18E0
1480 | 7S 3
10S 2
11S 2 | W 12
E 35
E 1 | В | 7A 7A
11P 11P
C
8A
C | 1952
1881
1945
1937
1959 | 900
900
900
909
909 | | Muir Wooda
Napa
Napa-Havan
Napa State Bospitsl
Navarro 1 NW | E2 6027
E3 6065
E3 6068
E3 6074
P9 6105 | Marin
Napa
Napa
Napa
Mendocino | Park Ser. E. Gipson O. Haven J. Allement Masonite Co. | 37 54
38 18
38 17 30
38 17
39 10 | 122 34
122 17
122 17 48
122 16
123 34 | 170
16
30
60
220 | 5N 4 | W 3
W 10
W 14
W 7 | В | 9A
7A
8A 8A
5P 5P
C | 1940
1945
1931
1877
1958 | 900
900
000
900
900 | | Newark
Novato 8 WNW
Novato Fire Hause
Oakland WBAP
Oakvills 1 WNW | E5 6144
E2 6290
E2 6290-02
E4 6335
E3 6351 | Alameda
Marin
Marin
Alameda
Napa | Leslie Salt
E. Thompson
E. Luders
USWB
A. Calkins | 37 31
38 08
3E 06 30
37 44
38 27 | 122 02
122 43
122 33 42
122 12
122 25 | 14
350
18
3
160 | 4N 8 | 2W
3W 24
5W 7
3W
5W 21 | | 8A 8A 8A
C
D
C C | 1891
1943
1957
1939
1906 | 900
900
411
900
900 | | Oakville 4 SW
Occidental
Paicines Ohrwell Ranch
Pala Alto City Hall
Paloma | E3 6354
P9 6370
01 6110
E7 6646
D2 6650 | Napa
Sonoma
San Benito
Santa Clara
Monteray | R. Plainer A. Elaney J. Ohrwell Engr. Dept. J. Bell | 38 23
38 25
36 44
37 27
36 21 | 122 28
122 59
121 22
122 0E
121 30 | 1465
1000
950
23
1835 | 7N 10
14S | 6W 6
0W 33
5E 12
3W 1
4E 23 | | C
7A
8A
8A
8A 8A
5P | 1940
1940
1924
1953
1940 | 900
900
900
900
900 | | Parkfield
Parkfield 7 NNW
Penttencis Rain Gage
Panngrove 2 N
Petsluma P. S. No. 2 | D3 6703
D3 6706
E6 6791-43
P9 6792-03
E2 6826 | Monterey
Monterey
Santa Clars
Sonoma
Sonoma | H. Durham
R. Morrison
G. Dodaon
P. Biebli
Pire Dept. | 35 53
36 00
37 24 00
3E 20
38 14 | 120 26
120 28
121 49 54
122 40
122 38 | 1482
3590
260
200
16 | 6N | | | 7A
C
7A
7A
5P 5P | 1938
D
1962
1930
1871 | 900
900
414
403
900 | | Petslums-Burns Petslums 1 N Pico Blanco B. S. Camp Pinnacles Netional Mon. Pleasanton Nursery | E2 6826-01
E2 6E29
D4 6E56
D2 6926
E5 6991-05 | Sonoma
Sonoma
Monterey
San Benito
Alameda | Eurnm
V. Chaix
P. Harlsu
Park Ser.
J. P. Lopez | 38 13 00
38 15
36 20 18
36 29
37 40 | 122 42 48
122 38
121 47 42
121 11
122 53 | 240
30
900
1310
345 | 5N
18S
17S | 8W 2
7W
2E 30
7E 2
1E 20 | | 8A
C
8A
4P 4P
8A 4:30P | 1959
1943
1957
1937
1939 | 901
900
000
900
000 | | Point
Arena
Poiet Piedras Blances
Port Chicego NAD
Portols State Park
Pottar Valley 3 NNW | F8 7009
05 7024
E4 7070
E8 7086
F9 7107 | Mendocino
San Luis Obispo
Contra Costa
San Mateo
Mendocino | J. Moungovan
Coast Guard
Naval Mag.
Park Ranger
W. Despain | 38 55
35 40
38 01
37 14 42
39 22 | 123 42
121 17
122 01
122 12 42
123 08 | 122
59
50
422
1060 | 2 N | 6E 12
1W
3W 8 | Q | 8A 8A
11P 11P
8A 8A
8A
C | 1940
1938
1946
1959
1953 | 900
900
900
901
900 | | Potter Valley 3 SE
Potter Valley P. H.
Priest Valley
Quien Saba-Hay Camp
Rancho Quien Saba | P9 7108
F9 7109
02 7150
01 7190
01 7249 | Mendocino
Mendocino
Monterey
San Benito
San Benito | R. Near
P. G. & E.
N. Palmer
J. P. Berts
R. Somavia | 39 18
39 22
36 11
36 51 30
36 50 12 | 123 04
123 08
120 42
121 11 48
121 12 48 | 1100
1014
2300
1630
1800 | | 1W 6 | H
O | C
3P 3P
SS SS
7A 7A
0 | 1952
1911
1898
1949
1931 | 900
900
900
000
000 | | Raucho Rico
Bedwond City
Elchmond
Rongevelt Ranch
Saiut Helena | D4 7249-21
E7 7339
E4 7414
D4 7539-01
E3 7643 | Monterey
Sun Mateo
Contrs Costs
Monterey
Nape | B. Stiller
Fire Dept.
Richmond
N. Roosevelt
E. Faulson | 36 14 24
37 29
37 56
36 10 48
38 30 | 121 47 24
122 14
122 21
121 41 48
122 28 | 900
31
55
1100
255 | 5S
1N
20S | 2E 31
3W
4W
2E 24
5W 31 | N | EA
5P 5P
8A 8A
8A 8A
6P 6P | 1941
1899
1950
1946
1907 | 900
900
900
000
900 | | Saint Helena 4 WSW
Saint Mary's College
Salinae 2 8
Salinae PAA Airport
Salinas Dams | E3 7646
E4 7661
02 7668
02 7669
03 7672 | Neps
Contrs Costs
Monterey
Monterey
See Luis Obispo | E. Learned
Pr. Benedict
Pire Dept.
Fed. Av. Agency
Dam Operator | 38 30
37 50
36 40
36 40
35 20 | 122 32
122 06
121 37
121 36
120 30 | 1792
625
80
80
1386 | 1S
14S
14S | 6W 4
2W 17
3R 34
3E
4E 8 | | C
5P 5P
5P 5P
C C | 1939
1942
1958
1873
1942 | 900
900
900
900
900 | TABLE A-1 CLIMATOLOGICAL STATION INDEX | STATION NAME | STA | COUNTY | OBSERVER | LATITUOE | LONGITUDE | ELEV
IN
FEET | TOWNSHIP | RANGE | SECTION | 40 ACRE | | IME
OF
RVATI | - 11 | RECORO | | |--|--|--|---|---|--|------------------------------------|--------------------------------|-----------------------------|---------------------------|---------|---------------------------|---------------------|---------|--------------------------------------|---------------------------------| | San Anselmo
San Antonio Mission
San Ardo
San Benito
San Clemente Omm | 82 7707-01
03 7714
D2 7716
01 7719
D4 7731 | Marin
Monterey
Monterey
San Benito
Monterey | Marin Co. Engr.
San Antonic Man.
W. Rosenberg
J. Shields
Wtr & Tel Co | 37 58 36
36 01
36 00 48
36 30 30
36 26 12 | 122 33 42
121 15
120 54 06
121 04 54
121 42 30 | 100
1060
440
1355
600 | 22S
22S
16S | 6W
7E
10E
8E
2E | 7
18
16
27
23 | R
B | 0
SP
8A
C
7A | 5P | | 1957
1959
1894
1936
1940 | 411
900
900
900
900 | | San Pelipe Highway Sta.
San Pran. Richmond Sunset
San Francieco WhAP
San Pran. Ped. Off. Bldg.
San Gregorio 3 SE | D1 7755
E8 7767
E7 7769
E7 7772
E6 7807 | Santa Clara San Francisco San Mateo San Francisco San Mateo | Oiv. of Highways
San Prancisco
USWB
USWB
Pomponio Rch | 37 01
37 46
37 37
37 47
37 18 | 121 20
122 30
122 23
122 25
122 20 | 365
300
8
52
355 | 10S
2S
3S
2S
7S | 6E
6W
5W
6W
4W | 30 | | C
C
C
SP | SP
C
C
SP | | 1943
1948
1928
1931
1954 | 900
900
900
900
900 | | San Jose San Jose Decid. F.F.S. San Juan Bautiste Miss. San Lucas Guidici San Maten | E6 7821
B6 7824
01 7835
D2 7845-10
E7 7864 | Santa Clara
Santa Clara
San Benito
Monterey
San Mateo | E. Billwiller A. Amstutz B. A. Farber DWR - L & WU Pire Oept. | 37 21
37 19
36 50 42
36 07 25
37 34 | 121 54
121 57
121 32 00
121 01 09
122 19 | 70
90
200
380
30 | 78
78
128
218
48 | 1E
1W
4E
9E
4W | 15
8
29 | J
B | C
8A
8A
V
SP | C
C | v | 1874
1935
1900
1962
1874 | 900
801
804
806
900 | | San Rafael Nat. Bank
San Rafael Nat. Bank
Santa Clara University
Santa Cruz
Santa Rita Muther | E2 7880
E2 7880-08
E6 7912
00 7916
02 7959-10 | Marin
Marin
Santa Clara
Santa Cruz
Monterey | City Engr.
Crocker-Cit. Bank
Santa Clera Univ.
R. Burton
DWR - L & WU | 37 SE
37 S8 24
37 21
36 59
36 45 00 | 122 32
122 31 30
121 56
122 01
121 41 24 | 31
25
88
125
80 | 2N
2N
7S
11S
14S | 6W
6W
1W
1W
3E | 12 | В | SP
8A
SP
SP
V | SP
SP
SP
C | v | 1948
1876
1881
1866
1962 | 900
413
900
900
806 | | Santa Ross Sewage Plant
Santa Rosa
Santa Rosa Pedranzini
Saratoga-Clark
Baratoga-Kriega | P9 7964
P9 7965
P9 7965-03
E6 7998-01
E6 7998-03 | Sonoma
Sonoma
Sonoma
Sants Clara
Santa Clara | M. McKiunie
C. Newberry
DWR - L & WU
J. Clerke
D. Kriege | 38 26 24
38 27
38 21 38
37 16 48
37 15 | 122 45 12
122 42
122 44 31
121 59 42
122 02 | 20
167
90
272
240 | 7N
7N
6N
7S
8S | 8W
8W
8W
1W
2W | 21
16
31
1 | P | 8A
7A
V
7A
7A | 7.A | 8A
V | 1956
1888
1962
1956
1960 | 000
900
806
414
414 | | Searsville Lake
Sebastopol 4 SSE
Skagga Spg. Las Lomas Rch.
Slack Canyon
Soledad CTF | 86 8068
P9 8072
P9 8272
02 8276
02 8338-01 | San Mateo
Sonoma
Sonoma
Monterey
Monterey | A. Clapp G. Nahmena J. Leithold Oiv. of Porestry P.F. Bontadelli | 37 24
38 21
38 41
36 05
36 28 26 | 122 14
122 49
123 08
120 40
121 22 34 | 350
150
1930
1730
230 | 6N
10N
21S | | 12
6
36
22
12 | В | 8A
C
8A
C
9A | 9.٨ | 9≜ | 1949
1935
1939
1955
1961 | 900
900
900
900
000 | | Soledad
Sonoma
Spreckela Buy, b
Spreckela
Spreckela
Spreckela Hill - Laguna Seca | 02 8338
E2 8351
02 8446
02 8446-01
E6 8447 | Monteray
Sonoma
Monterey
Monterey
Senta Clara | J. Prencioni
L. Dickey
B. Hennea
Spreckels Sugar Co
SCVWCD | 36 26
38 17
36 36
36 37
37 12 | 121 19
122 27
121 41
121 39
121 44 | | 178
SN
158
158
-98 | 6E
SW
3B
3E
3E | 7 | | SP
SA
SA
SA | SP
8A | | 1874
1952
1905
1905
0 | 900
900
900
000
414 | | Stevens Creek Reservoir
Suey Ranch
Sunset Beach St. Park
Talmage
Tamalpais Valley | E6 8519
D6 8627
D1 8680
F9 8776-01
E2 8779 | Santa Clera
Sen Luis Obispo
Santa Cruz
Mendocino
Marin | SCVWCD
Suey Ranca
Bch. & Pka.
L.G. Von Schriltz
Glessner | 37 18
34 59 40
36 54
39 08
37 52 42 | 122 05
120 22 35
121 50
123 11
122 32 36 | | 9N
11B
15N | 1E | 28 | E | 8A
SP
C
8A
8A | | | 1937
1909
1956
1953
1959 | 414
900
900
000
901 | | Templeton The Geyaera Tiburon-Topham Travia Air Force Base Ukiah | D3 8849
P9 8885
B2 8920-21
E3 9006
P9 9122 | San Luis Obispo
Sonoma
Marin
Solann
Mendocino | A. Willhoit F. Dewey B. Topbam U.S.A.F. Pire Dept. | 35 32 36
38 48
37 52 24
38 16
39 09 | 120 42 21
122 49
122 27 12
121 56
123 12 | 773
1600
400
50
623 | 18 | 9W
5W
1W | 29
23
4
24
17 | E | 8A
C
9A
8A
SP | 8A
SP | | 1886
1939
1960
1943
1877 | 000
900
000
902
900 | | Ukiah 4 WSW
Upper Morro Craek
Opper San Leandto Pilters
Upper Trea Pioca
Valleton | P9 9124
D6 9179
E4 9185
01 9189
03 9221 | Mendocino
San Luia Obiapo
Contra Coata
San Benito
Monterey | M. Dory E. Purser B. Bay MUD E. Prancher A. Curtis | 39 08
35 27 18
37 46
36 38
35 53 | 123 17
120 45 12
122 10
121 02
120 42 | 1900
1050
390
2050
950 | | 11E
3W
9E | 27
35
11
7
32 | B
G | 8A
7A
7A
C
C | 7▲ | | 1951
1951
1944
1940
1940 | 900
000
900
900
900 | | Vasona Reservoir
Venado
Veterans Home
Walmar School
Walmut Creek 2 ESE | E6 9270
P9 9273
E3 9305
E4 9420
E4 9423 | Santa Clara
Sonoma
Napa
Contra Costa
Contra Costa | SCVWCD
J. Harper
B. Berboza
M. Deunis
B. Whittemore | 37 14 36
38 37
38 23
37 57
37 53 | 121 58 00
123 01
122 22
122 05
122 02 | 300
1260
170
128
245 | 8S
9N
6N
1N
1N | 1W
10W
SW
2W
2W | 15
19
1 | | EA
C
8A
5P
8A | RA
8A | | 1962
1939
1912
1954
1887 | 414
900
000
900
900 | | Walput Creek 2 ENE
Walnut Creek 4 E
Wataonwille Water Works
Wilder Ranch
Wild Horae Valley | E4 9426
E4 9427
01 9473
D0 9675
E3 9675-41 | Contra Costa
Contra Costa
Santa
Cruz
Santa Cruz
Solano | T. Vanasek E. Irving L. Bechis D. &. Wilder G. Stiltz | 37 54
37 54
36 56
36 57 36
38 17 53 | 122 01
121 59
121 46
122 05 24
122 11 13 | 220
400
95
50
1240 | 1N
1N
11S
11S
5N | 2W
1W
28
2W
3W | 30
32
22
10 | Đ | C
9A
8A
5P
8A | 8A
2P | | 1944
1954
1880
1924 | 900
900
900
000
418 | | Woodacre
Wrights
Yorkville
Yountville Gamble | P9 9770
B6 9814
F8 9851
E3 9861 | Marin
Santa Clara
Mendocino
Napa | Div. of Forestry
M. Ware
L. Hulbert
DMR - L & WU | 38 00 24
37 08
38 55
38 26 05 | 122 38 30
121 57
123 16
122 22 05 | 430
1600
1100
120 | 2N
9S
12N
7N | 7W
1W
13W
5W | 23
2
24 | P | 2P
SP
C
V | 2P
C | ٧ | 1950
1918
1939
1962 | 808
900
900
806 | NUMBER | STATION NAME | TOTAL | JUL | AUG | SEP | 001 | NON | DEC | JAN | FEB | MAR | APR | MAY | N
O
O | |------------|-------------------------|-------|-----|------|-----|-----------|------|-------------------|------------------|------------|-------|------------|------|-------------| | E6 0053 | Alamitos Perc. Pond | 23.92 | 0 | 0 | EH | 7.37 | .13 | 2.11 | 4,45 | 2.91 | 3.27 | 3.26 | , h2 | E | | E4 0064 | Alamo 1N | 35.19 | 0 | .07 | E | 12.67 | 84. | 2.19 | 3,56 | 6.08 | 4.52 | 4,80 | .71 | H | | E6 0125 | Almaden Reservoir | 53.10 | 0 | .03 | 0 | 17,14 | 04° | 3,15 | 9.75 | 8.18 | 7.14 | 6.71 | 9. | 0 | | E3 0212 | Angwin FUC | 55.21 | 0 | 60. | .33 | .33 14.47 | 1.76 | - 1 | 6.55 10.54 | 4.61 | 7.12 | 8.62 | 1,12 | 0 | | D2 0322 | Arroyo Seco | 13.88 | 0 | 0 | 0 | .59 | E | H | .81 | 6.55 | 2.50 | 2.51 | .05 | .87 | | E3 0372 | Atlas Road | 53.62 | 0 | • 02 | .37 | 11.52 | 1.83 | - (| 4.80 13.40 | 3.66 | 7.90 | 8.92 | 1.08 | .12 | | D3 0360-01 | Atascadero H.M.S. | 20.12 | 0 | 0 | 0 | .71 | 0 | 1.46 | 2.33 | 6.57 | 4.47 | 4.08 | •36 | .14 | | DO 0674 | Ben Lomond | 67.81 | 0 | .13 | .12 | 12 14.97 | .87 | 5.46 | 5.46 16.97 | 9.30 | 9.24 | 9.74 | 1.01 | 0 | | Е4 0693 | Berkeley | 30,05 | 0 | .12 | .41 | 7.05 | \$ | 3.50 | 48.4 | 3.10 | 3.51 | 5.97 | .53 | 8 | | E6 9706 | Berryessa lE | 25.16 | 0 | 0 | 0 | 3.95 | .76 | 2.60 | 2.90 | 3.71 | 4.72 | 5.42 | 1.10 | 0 | | D4 0790 | Big Sur State Park | 60.16 | 0 | 0 | EH | 8.15 | ,35 | 6.61 | 6.61 13.89 11.67 | 11,67 | | 7.80 11.08 | .53 | 89 | | E6 0850 | Black Mountain 2SW | 42.84 | EH | .15 | .16 | .16 11.44 | .83 | 3.55 | 6.07 | 7.85 | 48.4 | 6.34 | 1.09 | .02 | | F9 0876 | Blakes Landing | 31,32 | 0 | .10 | .25 | 8.72 | 8. | 70.7 | 5.05 | 2.21 | 4.06 | 5.64 | .27 | 0 | | F8 0973 | Boonville HMS | 47.22 | 0 | .37 | .73 | 8.41 | 3.03 | 424 | 4.93 | 7.32 | 7.70 | 9.05 | 7 14 | d | | F8 0973-02 | Boonville - Farrer | 65.08 | 0 | .25 | .87 | 10.97 | 3.76 | 5.98 | 8.13 | 9.38 | 12.32 | 11.46 | 1.96 | 0 | | F8 0973-04 | Boonville - Bell Valley | Ж | 0 | .30 | .71 | 8.41 | 3.67 | 4.30 | 6.63 | 4.22 | D | D | Д | 0 | | D4 0998-27 | Bouchers Gap | Σ | NA | N. | NR | NR | RB | 4.22 | | 9.79 10.33 | 9.20 | 9.58 | .81 | ₽. | | D3 1034 | Bradley | 15.78 | 0 | 0 | .02 | 8. | 0 | 2.29 | 2.71 | 4.85 | 2.68 | 1.83 | .41 | ЕН | | 0711 10 | Buena Vista | 13.08 | 0 | 0 | 0 | -89 | e.27 | e _{1.93} | 2.34 | 1.69 | 2.60 | 2.64 | .54 | .18 | | E7 1206 | Burlingame | 24.96 | 0 | ₽. | 0 | 6.68 | .37 | 2.81 | 3.63 | 3.15 | 4.17 | 3.66 | .45 | 0 | | E4 1216 | Burton Ranch | 36.00 | 0 | .05 | .05 | 13.33 | 9. | 2,69 | 3.83 | 5.68 | 4.38 | 4,68 | 99. | .05 | | D1 1247 | Buzzard Lagoon | 55.77 | 0 | .25 | 0 | 10.75 | 1.98 | 4.80 | 4.80 11.78 | 7.32 | 6.82 | 11.24 | .83 | 0 | | E5 1281 | Calaveras Reservoir | 22.81 | 0 | ਰੋ | 0 | 3.79 | 99. | 2.26 | 1.65 | 4.08 | 4.10 | 5.24 | .99 | 9 | | E6 1285 | Calero Reservoir | 33.72 | 0 | 0 | 0 | 9.10 | .23 | 2.30 | 9.31 | 3.93 | 64.4 | 7,00 | .36 | 9 | | C121 54 | | | , | 7 | ` | , | | | | | | | | | | NUMBER | STATION NAME | TOTAL | JUL | AUG | SEP | 100 | NON | DEC | JAN | FEB | MAR | APR | MAY | SUN | |------------|------------------------------|--------|----------------|------|----------------|------------|-------|-------------|------------------|-------|-------------|-------|------|-----| | E6 1341-10 | Cambrian Park | × | R | MR | M | RB
RB | .15 | 2.27 | 4.08 | 3.86 | 3.78 | 3.74 | .55 | а | | E6 1377-01 | Campbell Water Company | 23.03 | e _o | 60 | 0 ₉ | 4.72 | .13 | 2.49 | 5.24 | 2.55 | 3.65 | 3.69 | .55 | .01 | | D4 1534 | Carmel Valley | 19.72 | 0 | 0 | 0 | 1.09 | 7 | 2.22 | 5.28 | 3.21 | 3.70 | 3.86 | .22 | .03 | | F9 1602 | Cazadero | 82.63 | 0 | .65 | .63 | 15.18 | 3.88 | 11.64 13.48 | 13.48 | 7.70 | 10.22 17.69 | 17.69 | 1.53 | .03 | | D1 1739 | Chittenden Pass | 25.68 | 0 | .50 | .03 | 2.77 | 04. | 2.86 | 5.08 | 4.48 | 3.92 | 5.35 | 42. | .05 | | D1 1739-01 | Chittenden | 24.95 | 0 | 0 | 0 | 2.64 | .36 | 2.78 | 4.74 | 5.05 | 3.80 | 5.39 | 61. | E | | D1 1766 | Cienaga | 20.73 | 0 | 0 | 0 | .70 | .35 | 3.25 | 4.24 | 4.05 | 3.52 | 3,88 | .57 | .17 | | F9 1838 | Cloverdale 3SSE | 49.74 | ₽ | .26 | 14. | 12.24 | 1.42 | 5.81 | 6.43 | 6.58 | 7.80 | 7.28 | 1.51 | ٥ | | F9 1840 | Cloverdale 11W | e73.52 | 0 | .53 | 1.09 | 1.09 15.37 | 4.45 | 8.65 | 8.65 13.38 | e5.42 | 10.02 12.00 | 12.00 | 2.61 | 0 | | E4 1962 | Concord 3E | 23.30 | 0 | .01 | 0 | 8.12 | .37 | 1.60 | 2.03 | 4.18 | 3.16 | 3.18 | .58 | .07 | | E3 1976 | Conn | 38.42 | 0 | 0 | .10 | 9.90 | ₽9. | 5.03 | 5.12 | 5.59 | 4.91 | 5.44 | 1.69 | 0 | | F9 2105 | Coyote Dam - Lake Mendocino | 40.60 | 0 | .16 | .51 | 8.60 | 2.72 | 5.15 | 4.20 | 5.04 | 5.87 | 7.37 | .80 | .18 | | E6 2109 | Coyote Reservoir | 27,79 | 0 | 0 | E | 2,42 | •43 | 2,60 | 6.22 | 6.39 | 3,79 | 5.48 | .45 | 10. | | DO 2159 | Crest Rench | 74.50 | 0 | .50 | .35 | 21.70 | 1.35 | 7.90 | 7.90 11.70 12.80 | 12.80 | 8.40 | 8.60 | 1,20 | 0 | | E4 2177 | Crockett | 28.88 | 0 | .65 | <u>e</u> | 8.88 | ₽8. | 2.18 | 3.78 | 3.72 | 4.58 | 4.20 | . 59 | .05 | | DO 2290 | Davenport | 29.15 | 8 | .15 | ήΤ. | 4.18 | .41 | 3.03 | 3.48 | 5.79 | 90.9 | 5.16 | .71 | 20. | | D2 2362 | Del Monte | 13.10 | 0 | 0 | .03 | .73 | .13 | 1.91 | 2,64 | 1.87 | 3.0 | 2.58 | .17 | 0 | | E3 2580 | Duttons Landing | 28.67 | 0 | .07 | % | 7.95 | .78 | 2.61 | 4.12 | 3.36 | 5.07 | 4.46 | .19 | EH | | E6 2919 | Evergreen - Silver Creek Rd. | M | MR | M. | MR | Æ | MR | 82 | 2.61 | 2.96 | 3.15 | 3.72 | .57 | EH | | E3 2933 | Fairfield | 25.63 | 0 | .02 | 0 | 7.27 | .70 | 2.17 | 5.02 | 2.30 | 3.41 | 4.21 | 94. | .07 | | E3 2934 | Fairfield Police Station | 28.20 | 0 | 0 | E | 7,85 | ,16 | 2,58 | 5,32 | 2,67 | 3.59 | 5.49 | .45 | 8 | | F8 3161 | Fort Bragg | 36.73 | 0 | 1.59 | .83 | 5.82 | e3.21 | 3.63 | 3.24 | 2.70 | 6.50 | 8.29 | 48. | 8 | | F8 3164 | Fort Bragg Avn | 40.17 | 0 | 1.97 | .79 | 6.23 | 3,32 | 4.35 | 3.87 | 2.51 | 6.67 | 9.50 | 96. | 0 | | F8 3191 | Fort Ross | 38.58 | 90. | 42. | 1.36 | 7.23 | 1.93 | 5.78 | 4.79 | 3.89 | 5.33 | 6.43 | 1.05 | .03 | | D1 3232 | Freedom 8NNW | e56.54 | 0 | .19 | 0 | 11.61 | 1.51 | | 4.78 215.84 | e5.23 | 7.17 | 9.54 | .67 | 0 | | | | | | | | | | | | | | | | | | T T 2.13 .48 2.36 6.15 5.85 3.97 T T 2.13 .48 2.36 6.15 5.85 3.97 O O 2.48 .32 2.27 8.74 3.20 3.67 O O 2.48 .32 2.27 8.74 3.20 3.67 O O 2.48 .32 2.27 8.74 3.20 3.67 O O 2.48 .32 2.27 8.74 3.80 3.69 O O .55 .15 2.30 9.07 3.65 6.89 D D D D D D D 5.56 5.96 D OO 0 15.79 .35 2.48 9.25 6.92 6.02 OO 0 15.79 .60 3.57 3.44 3.65 4.33 T T 8.07 .80 3.77 8.46 3.98 2.91 2.11 O O 0 .97 0 2.70 4.46 3.98 2.91 T T 7.2 2.3 9.92 1.93 5.98 6.65 6.33 7.04 O O .97 0 2.70 4.46 3.98 2.91 T T 7.2 2.5 1.73 4.45 2.03 2.12 O O 2.45 .31 2.15 6.02 3.21 4.23 1.3 5.7 8.42 2.57 4.75 4.86 4.36 7.85 1.3 5.7 8.42 2.57 4.75 4.86 4.36 7.81 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.2 5.50 12.90 1.30 5.35 6.20 4.10 6.10 2.3 6.5 6.20 4.10 8.50 6.50 6.50 6.50 6.50 2.4 7.3 8.9 6.50 7.31 8.10 | TOTAL | | JUL | AUG | SEP | OCT | NOV | DEC | | FEB | 1-1 | | MAY | SUN | |---|-------------------------|--------|-----|-----|-----|-------|------|------|-------|-------|------|-------|------|-----| | 0 T T 2.13 .48 2.36 6.15 5.85 3.97 0 D C 2.48 .32 2.27 8.74 8.3.20 3.67 0 D C 2.48 .32 2.27 8.74 8.3.20 3.67 0 D C 2.48 .32 2.27 8.74 8.3.20 3.67 0 O C 2.48 .32 2.27 8.74 8.3.20 3.67 0 O C 2.48 .32 2.27 8.74 8.3.20 3.67 0 O C 2.4 10.47 1.17 6.03 6.63 6.19 6.26 0 D D D D D D D D D 5.56 5.96 D D D O O C 2.4 3.57 3.44 3.65 6.89 0 O C 33 .63 9.59 1.74 6.47 5.89 6.62 7.36 0 O C 33 0.69 1.05 2.44 5.22 2.65 4.73 0 O C 0 O C 3.7 3.6 6.40 10.75 3.99 7.74 0 O C 0 O C 3.7 3.6 6.40 10.75 3.99 7.74 0 O C 0 C 3.7 3.6 6.40 10.75 3.99 7.74 0 O
C 0 C 3.7 3.8 2.8 6.65 6.33 7.04 0 O C 0 C 3.7 3.8 2.8 2.8 2.9 2.1 2.11 0 O C 0 C 2.45 3.1 2.13 4.45 2.03 2.12 0 O C 0 C 2.45 3.1 2.15 6.02 3.21 4.23 0 O C 2.45 3.1 2.15 6.02 3.21 4.23 0 O C 2.45 3.1 2.15 6.02 3.21 4.23 0 O C 2.45 3.07 7.19 8.67 7.31 8.16 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Fremont Peak State Park | 23.41 | 0 | .03 | •03 | 2,30 | .50 | 2,30 | | 3.99 | 3.38 | 5.25 | 98 | .05 | | 0 T T 2.13 .48 2.36 6.15 5.85 3.97 0 0 0 2.48 .32 2.27 8.74 8.20 3.67 0 0 0 2.48 .32 2.27 8.74 8.20 3.69 0 0 0 0 5.5 .26 1.85 4.80 5.93 3.69 0 0 0 0 5.5 .15 2.30 2.07 1.69 3.04 0 0 0 0 5.75 .15 2.30 2.07 1.69 3.04 0 0 0 0 15.79 .17 6.03 6.63 6.19 6.26 0 0 0 0 15.79 .50 2.48 9.25 6.92 6.02 0 0 0 0 10.90 1.05 2.44 5.22 2.65 4.73 0 0 0 0 0 0.70 1.05 2.44 5.22 2.65 4.73 0 0 0 0 0 0 0.70 1.05 2.44 5.20 2.46 5.55 0 0 0 0 0 0 0.70 1.05 2.44 5.20 2.05 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 23.96 | 0 | 0 | H | 3.87 | .22 | 1.78 | | 5.47 | | 4.10 | .71 | 0 | | 0 0 0 2.48 .32 2.27 8.74 8.32 3.67 3.67 0 0 0 0 2.48 .32 2.27 8.74 8.320 3.67 3.67 0 0 0 0 0 2.55 .26 1.85 4.80 5.93 3.69 0 0 0 0 0 0 5.55 .15 2.30 2.07 1.69 3.04 0 0 0 0 0 0 5.5 10.47 1.17 6.03 6.63 6.19 6.26 0.20 0 0 0 0 0 15.79 3.57 2.48 9.25 6.92 6.02 0 0 0 0 0 15.79 3.57 3.44 3.65 5.96 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 26.52 | 0 | H | E | 2.13 | 84. | 2.36 | | 5.85 | _ ! | 5.19 | •39 | I | | 0 T T 2.55 .26 1.85 4.80 5.93 3.69 3.69 0 0 0 0 .55 .15 2.30 2.07 1.69 3.04 0 0 0 0 .26 .51 10.47 1.17 6.03 6.63 6.19 6.26 T .30 0 0 0 0 0.5 0 15.79 3.5 2.48 9.25 6.92 6.02 0 0 0 0.5 0 15.79 3.5 2.48 9.25 6.92 6.02 0 0 0 0 0.3 0 10.90 1.04 5.89 6.62 7.36 0 0 0 0 0 0 0.97 0 0.77 3.44 3.65 6.33 7.04 0 0 0 0 0 0 0.97 0 0.77 3.99 2.91 2.16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | e26.28 | 0 | 0 | 0 | 2.48 | .32 | 2.27 | e8.74 | e3.20 | - 1 | 5.11 | ,31 | .18 | | 0 0 0 05515 2.30 2.07 1.69 3.04 T1844 10.90 134 6.30 9.07 3.65 6.89 D D D D D D D D 5.56 5.96 D O05 0 15.7935 2.48 9.25 6.92 6.02 O2363 9.59 174 6.47 5.89 6.62 736 O03 0 10.9760 357 344 365 133 T3026 1083 266 6.40 1075 399 7744 O03 0 0 097 0 244 522 265 473 O0 0 0 0 097 0 240 389 291 212 O0 0 0 0 245 193 596 620 314. 22 O0 0 0 0 245 13 445 23 22 T2029 130 25 13 445 23 22 O0 0 0 0 245 34 45 62 31 423 O0 0 0 0 245 34 45 62 45 60 T T20 245 34 25 46 45 23 22 O0 0 0 0 245 34 45 23 22 O0 0 0 0 245 34 45 46 45 22 T20 245 37 445 23 22 T21 327 425 13 445 23 22 T21 228 123 25 45 45 63 45 60 T21 228 123 25 43 85 83 86 15 63 43 86 15 63 43 86 15 63 43 83 85 63 43 83 85 63 43 85 63 43 85 63 43 85 6. | | 24.99 | 0 | T | ₽ | 2.55 | .26 | 1.85 | | 1 | 1 | 5.36 | .41 | .14 | | D D D D D D D D 5.56 5.99 6.89 6.89 6.89 6.89 D O O O O O O O O O O O O O O O O O O | | 13.14 | 0 | 0 | 0 | .55 | .15 | 2.30 | | 1.69 | - 1 | 2.56 | 99. | .12 | | T18 .14 10.90 1.34 6.30 9.07 3.65 6.89 D. D. D. D. D. D. D. 5.56 5.96 D. D. O. | | 46.61 | 0 | .26 | | 10.47 | 1.17 | 6.03 | | 6.19 | | 8.27 | .82 | 0 | | D D D D D D D 5.56 5.96 D D C C C C C C C C C C C C C C C C C | | 47.60 | Т | .18 | 44. | 10.90 | 1.34 | 6.30 | | 3.65 | | 8.06 | .77 | Ŧ | | 0 .05 0 15.79 .35 2.48 9.25 6.92 6.02 6.02 0 .33 .63 9.59 1.74 6.47 5.89 6.62 7.36 0 .29 .51 10.97 .60 3.57 3.44 3.65 4.33 0 .20 10.90 1.05 2.44 5.22 2.65 4.73 1.0 | | M | А | Q | Д | Q | D | Д | 5.56 | | | D | D | D | | 0 .33 .63 9.59 1.74 6.47 5.89 6.62 7.36 6.02 2.33 | | 146.97 | 0 | .05 | | 15.79 | .35 | 2.48 | | 6.92 | | 5.37 | .74 | 0 | | 0 .29 .51 10.97 .60 3.57 3.44 3.65 4.33 0 .0 10.90 1.05 2.44 5.22 2.65 4.73 0 .03 0 10.90 1.05 2.44 5.22 2.65 4.73 0 .29 .25 10.83 2.06 6.40 10.75 3.99 7.74 0 0 .29 .23 9.92 1.93 5.98 6.65 6.33 7.04 0 0 0 0 .97 0 2.70 4.46 3.98 2.87 0 0 0 0 6.49 .22 1.73 4.45 2.03 2.12 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 0 2.45 3.01 2.15 6.02 3.21 4.23 0 0 0 0 2.45 3.07 7.19 8.67 7.31 8.16 10 6.10 | | 48.81 | 0 | •33 | .63 | 9.59 | 1.74 | 6.47 | | 6.62 | | 9.25 | .93 | 0 | | 0 T T 8.07 .80 3.70 8.24 2.46 5.55 4.73 0 .03 0 10.90 1.05 2.44 5.22 2.65 4.73 T .30 .26 10.83 2.06 6.40 10.75 3.99 7.74 0 .29 .23 9.92 1.93 5.98 6.65 6.33 7.04 0 0 T T .72 .25 1.73 4.45 2.91 2.11 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 T .27 8.42 2.57 4.75 4.86 4.36 7.85 T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 1 | | 33.08 | 0 | .29 | _ | 10,97 | 9. | 3.57 | | | 1 | 5.08 | 79• | 0 | | 0 .03 0 10.90 1.05 2.44 5.22 2.65 44.73 T .30 .26 10.83 2.06 6.40 10.75 3.99 7.74 0 .29 .23 9.92 1.93 5.98 6.65 6.33 7.04 0 0 0 0 0.97 0 2.70 4.46 3.98 2.91 2.11 0 0 0 0 0.69 .22 1.73 4.45 2.03 2.12 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 0 0 2.5 50 12.90 1.30 5.35 6.20 4.10 6.10 T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 1 | - 1 | 33.43 | 0 | L | H | 8.07 | .80 | 3.70 | | | | 4.25 | .36 | 0 | | T | Ì | e33.54 | 0 | .03 | 0 | 10.90 | 1.05 | 2.44 | | | 1 | 5.58 | e.92 | •05 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 50.32 | H | •30 | .26 | 10.83 | 2.06 | 6.40 | 10.75 | 3.99 | - 1 | 6.85 | 1.14 | 0 | | 0 0 0 0 .97 0 2.70 4.46 3.98 2.87 2.87 2.87 2.87 2.87 2.87 2.87 2.8 | | 46.35 | 0 | .29 | .23 | 9.92 | 1.93 | 5.98 | | | | 6.80 | 1.18 | 0 | | 0 T T .72 .25 1.78 3.89 2.91 2.11
0 0 0 .69 .22 1.73 4.45 2.03 2.12
0 0 0 2.45 .31 2.15 6.02 3.21 4.23
0 .13 .57 8.42 2.57 4.75 4.86 4.36 7.85
0 .25 .50 12.90 1.30 5.35 6.20 4.10 6.10
T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 1 | j | 19.09 | 0 | 0 | 0 | .97 | 0 | 2.70 | - 1 | - 1 | Į. | 3.30 | .52 | .29 | | 0 0 0 6.69 .22 1.73 4.45 2.03 2.12 2.15 6.00 0 0 2.45 3.1 4.45 2.03 2.12 4.23 0.0 0 0 0 2.45 3.1 2.15 6.02 3.21 4.23 0.0 0 0 0 2.45 3.1 2.15 6.02 3.21 4.23 0.0 0 0 2.5 6.012 0.0 0.0 0.25 6.00 1.30 5.35 6.20 4.10 6.10 0 0 2.21 8.29 15.79 3.07 7.19 8.67 7.31 8.16 10 0 2.1 2.28 12.97 1.70 7.34 8.95 8.31 8.19 | | 14.87 | 0 | T | L | .72 | .25 | 1.78 | 1 | 2.91 | | 2.72 | •39 | .10 | | 0 0 0 0 2.45 .31 2.15 6.02 3.21 4.23 0 4.23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 14.39 | 0 | 0 | 0 | 69. | .22 | 1.73 | - 1 | 1 | | 2,61 | .39 | .15 | | 0 .25 .50 12.90 1.30 5.35 6.20 4.10 6.10 T .27 .89 12.97 1.70 1.30 5.35 6.20 4.10 6.10 0.10 0.10 0.10 1.30 5.35 6.20 4.10 6.10 0.10 0.10 0.10 0.10 0.10 0.10 0 | | 24.96 | 0 | 0 | 0 | 2.45 | .31 | 2.15 | | | - 1 | 5.79 | .58 | .22 | | T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 41.85 | 0 | .13 | .57 | 8.42 | 2.57 | 4.75 | | - 1 | | 7.54 | 8. | 0 | | T .27 .89 15.79 3.07 7.19 8.67 7.31 8.16 1 0 .21 .28 12.97 1.70 7.34 8.95 8.31 8.19 | | 45.70 | 0 | .25 | .50 | 12.90 | 1.30 | 5.35 | | - 1 | - 1 | 8.05 | .95 | 0 | | 0.8 12.97 1.70 7.34 8.95 8.31 8.95 | | 64.78 | E | .27 | .89 | 15.79 | 3.07 | 7.19 | | | | 11.19 | 2.24 | 0 | | | | 57.65 | 0 | .21 | .28 | 12.97 | 1.70 | | | | | 8.97 | .73 | T | | 60:5 po:1 66:6 po:5 0 66: 0 0 0 | | 15.61 | 0 | 0 | 0 | .59 | 0 | 2.00 | 5.99 | 1.68 | 2.89 | 1.67 | .42 | .37 | ### TABLE A-2 SEASONAL PRECIPITATION | NUMBER | STATION NAME | TOTAL | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | S | |------------|------------------------------|---------|----------------|----------------|-----|-----------|------|------|------------|------------------|--------|-------|------|-----| | E4 4633 | Lafavette 2NNE | 35.68 | 0 | % | 8 | 13.02 | .70 | 2.58 | 4.72 | 5.04 | 3.65 | 4.97 | 8 | 95 | | F9 4652 | Lagunitas Lake | . 64.86 | 0 | .29 | .38 | 15.15 | 1.45 | 8.64 | 11.44 | 7.78 | 9.25 | 9.46 | 1.05 | 0 | | E8 4660 | La Honda | 40.05 | 8. | .29 | .42 | 79.6 | .83 | 3.87 | 6,69 | 5.01 | 5.38 | 6.33 | 1.38 | .10 | | E3 4677 | Lake Curry | e39.10 | e ₀ | e ^o | -14 | 9.99 | 7.L. | 2.67 | 6.02 | 5.75 | 6.36 | 6.51 | -89 | 0 | | E6 4916 | Leroy Anderson Dam | M | 0 | ਰੋ. | 0 | Ω | .21 | 2.18 | 7.08 | 4.78 | 4.20 | 4.28 | .21 | 0 | | E6 4922 | Lexington Reservoir | 54.92 | 0 | 8. | .01 | .01 14.69 | 148 | 4.19 | - 1 | 9.71 10.02 | 7.00 | 8.8 | 8. | 0 | | D3 4963 | Linn Ranch | Σ | 0 | 0 | 0 | .99 | 0 | 3.00 | 4.63 | Q | Ω | 3.29 | .20 | ठं | | E5 4996 | Livermore Sewage Plant | 22,12 | 0 | 0 | 0 | 5.33 | .30 | 1.93 | 2.03 | 5.60 | 3.10 | 3.35 | 74. | 70. | | E5 4997 | Livermore 2SSW | 18.14 | 0 | H | 0 | 3.64 | .28 | 1.55 | 1.40 | 4.50 | 2.60 | 3.47 | .70 | EH | | D3 5017 | Lockwood 2N | 17.31 | 0 | 0 | 0 | 74. | 0 | 2.92 | 4.80 | 2.65 | 3,13 | 2.98 | •30 | 8. | | D5 5120-03 | Los Burros | M | NR | NR | NR | 10.15 | 01. | | 16.05 | 5.70 16.05 15.65 | 18.70 | D | 1.56 | .25 | | E6 5123 | Los Gatos | 40.65 | 0 | 0 | 0 | 11.26 | .28 | 3.09 | 5.02 | 10.00 | ец. 42 | 6.02 | .56 | 0 | | E6 5123-04 | Los Gatos - Old Orchard Road | × | NR | MR | NR | M. | MR | MR | MR | æ | 4.69 | 4.39 | 9. | 10. | | DO 5125 | Los Gatos 4SW | 74.86 | 0 | .03 | 8 | 18.37 | .72 | 5.91 | 8.99 | 8.99 15.77 | 10.85 | 12.91 | 1.25 | EH | | E3 5333 | Mare Island | 27.71 | 0 | .05 | .02 | 8.61 | .83 | 2.34 | 4.87 | 2.27 | 4.15 | 4.20 | .37 | 0 | | E4 5371 | Martinez 3S | 32.59 | 0 | 8 | 0 | 11.91 | .54 | 2,11 | 5.68 | 2.73 | 5.12 | 3.96 | .36 | .10 | | E4 5372 | Martinez 3SSE | 31.15 | 0 | 8 | 0 | 11.20 | .59 | 2,13 | 3.84 | 4.51 | 4.59 | 3.79 | .34 | 8 | | Е4 5377 | Martinez Fire Station | 27.63 | 0 | G | 0 | 9.25 | .62 | 1.89 | 3,15 | 4.39 | 4.1 | 3.73 | .42 | 99 | | E2 5647 | Mill Valley | 35.37 | 0 | .05 | .78 | 8.61 | 1.00 | 4.75 | 5.32 | 3.99 | 5.09 | 5.27 | .51 | 0 | | D4 5795 | Monterey | M | 0 | .25 | .15 | 1.33 | .37 | 2.21 | 3.05 | 2.70 | 4.14 | NR |
N. | NR. | | E6 5844 | Morgan Hill 2E | 28.18 | 0 | 0 | 0 | 4.54 | .31 | 2.28 | 6.77 | 5.18 | 4.47 | 4.38 | .25 | 0 | | E6 5844 | Morgan Hill 6WNW | 40.56 | 0 | 0 | 0 | 10.64 | .22 | - 1 | 2,58 14,37 | 2.45 | 5.07 | 4.93 | .30 | 0 | | D1 5853 | Morgan Hill SCS | e28.28 | 0 | 0 | 0 | 4.47 | .22 | 2.27 | 10.16 | 2.20 | 4,49 | 4.33 | .20 | 0 | | D6 5869 | Morro Bay 3N | 21.23 | 0 | 0 | 0 | .92 | 0 | ₽.7 | 2.87 | 4.10 | 2.01 | 4.03 | •62 | -14 | | Е4 5915 | Mt. Diablo North Gate | 34.20 | 0 | 0 | 0 | 10.67 | .65 | 2,16 | 3.62 | 7.09 | 3.64 | 5.38 | .99 | 0 | | | | | | | | | | | | | | | | | #### IABLE A-2 | E5 5933 Mt. Hemilton D1 5973 Mt. Madonna D1 5973-11 Mt. Madonna Co. Pk. E2 5996 Mt. Temalpais 2SW E2 6027 Muir Woods E3 6065 Napa - Haven E3 6074 Napa - Haven E3 6074 Navarro INW E5 6144 Newark E5 6290-02 Novato Fire House E4 6335 Oakland WBAP E3 6551 Oakville lwww E3 6554 Oakville lwww E9 6370 Occidental D1 6610 Paicines Ohrwall Ranch E7 6646 Paloma E7 6646 Paloma | 17 | | | | | 5 | | ט
ב
ג | 1 | 2 | | MLN | MAI | 200 | |---|-----------------|--------------------|-----|-----|------------|-----------------------|-------|-------------|------------|------|------|------------|------|----------------| | | | 17.93 | 0 | 0 | EH | 1.71 | ₹9. | 1.68 | 1.68 | 2.79 | 4.33 | 4.16 | 46. | 0 | | | e ₅₁ | e _{51.10} | 0 | .10 | .07 | e9.90 | 1.71 | | 4.20 94.20 | 4.35 | 5.76 | 10.56 | .35 | 0 | | | | 49.14 | .01 | .20 | .05 | 9.45 | 1.75 | 3.91 | 8.66 | 7.93 | | 5.79 10.55 | .68 | .16 | | | Lt1 | 47.07 | .03 | .41 | 2.15 11.50 | 11.50 | 2.02 | ±0°9 | 7.53 | 3.48 | 4.74 | 8.09 | .97 | 7 | | 8 | P13 | 43.80 | .03 | .22 | 1.75 | 1.75 10.10 | 1.65 | 5.72 | 5.28 | 4.88 | 5.30 | 7.98 | .85 | ਰੋ | | 2 | 33 | 33.76 | 0 | 0 | 91. | 16 10.05 | .80 | 3.33 | 3.93 | 5.02 | 4.18 | 5.63 | 99° | E | | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | 33 | 33,57 | 0 | .02 | .21 | 9.82 | .79 | 3.22 | 4.11 | 4.74 | 4.45 | 5.84 | .37 | EH | | 8 8 | | 35.09 | 0 | .11 | .20 | 20 10.37 | .97 | 3.93 | 4.71 | 3.79 | 4.91 | 5.66 | 44. | 0 | | | 047 | 40.97 | 0 | 4Z. | 29° | .67 e7.19 e3.21 e3.95 | e3.21 | e3.95 | 5.18 | 2.23 | 7.15 | 9.68 | .97 | 0 | | | 91 | 19.39 | 0 | 0 | 0 | 4.53 | 4€. | 2.20 | 1.51 | 2,88 | 3.09 | 4.19 | .57 | 80. | | 200 | 37 | 37.79 | 0 | % | .43 | 43 10.61 | 1.0t | 4.39 | 6.61 | 2.76 | 5.01 | 6.39 | 64. | 0 | | | 31 | 31.68 | 0 | 0 | છં. | 8.12 | 04. | 3.32 | 6.19 | 4.45 | 4.89 | | .39 | 0 | | | 25 | 25.65 | ы | .05 | .19 | 8.56 | .61 | 2.47 | 2.68 | 2.64 | 3.31 | 4.60 | .51 | .03 | | | | | 0 | .03 | .27 | 11.08 | .79 | 4.24 | | | | | .59 | EH | | | 5 | 51.42 | 0 | .07 | .25 | 94.85 | 1.29 | 5.60 | 5.60 10.40 | 3.93 | 7.37 | 6.91 | .75 | 0 | | | 57 | 57.35 | 0 | Lη* | 1.40 | 1.40 11.44 | 1.93 | 44.6 | 7.85 | 6.12 | 84°℃ | 06*6 | 1.24 | 80. | | | | 17.24 | 0 | 0 | 0 | 69: | .26 | 2.18 | 2.84 | h.22 | 2,86 | 3.52 | .55 | .12 | | | | 21.71 | 0 | EH | 터 | 2.92 | .41 | 2.30 | 1,88 | 3.66 | 2.37 | 3.05 | .51 | .02 | | | 25 | 25.72 | 0 | 0 | EH | 2.09 | .o7 | 2.54 | 8.83 | 2.53 | 86°4 | 7,42 | .18 | 80. | | o/03 FarkileId | 16 | 16.44 | 0 | 0 | 0 | 19. | 0 | 1.60 | 2,19 | 5.91 | 3.09 | 2.51 | 74° | H | | D3 6706 Parkfield 7NNW | 16 | 19.91 | 0 | 0 | 0 | -82 | 0 | 2.77 | 4.25 | 3.48 | 2.14 | 2.50 | .63 | .02 | | E6 6791-43 Penitencia Rain Gage | | 17.80 | 0 | 0 | 0 | 2.58 | 99. | 1.91 | 1.35 | 3.15 | 3.20 | 4.13 | .82 | o _o | | F9 6792-03 Penngrove 2N | 170 | 40.73 | 0 | .07 | •35 | 9.37 | .88 | 3.80 | 5.50 | 9.6 | 5.07 | 5.53 | .52 | 0 | | E2 6826 Petaluma Fire Station | | 28.96 | 0 | .03 | 80. | 7.29 | .61 | 3.32 | 4.97 | 3.04 | 4.58 | 4.58 | 94. | 0 | | E2 6826-01 Petaluma - Burns | 3, | 37.50 | 0 | 0 | .20 | 20 10.40 | .85 | 3.60 | 5.30 | 5.35 | 5.25 | 6.05 | .50 | 0 | | STATION NAME | | | | | | | | | | | | | | | | |--|------------|-----------------------------|---------|------------|------|------|-------|------|------|-------|-------|------|------------|------|------| | Prior Blanco Boy Scout Camp M 0 0 0 11.10 .31 4.45 14.25 Prior Blanco Boy Scout Camp M 0 0 0 11.10 .31 4.45 14.25 Prinnacles National Monument 16.15 0 0 0 0 .86 0 2.13 2.91 Point Arena 40.83 0 1.20 .86 7.31 3.51 5.18 3.72 Point Priedras Blancas 29.26 T 0 0 1.17 .23 5.86 6.12 Point Olicago NAD 23.13 0 T 0 0 1.17 .23 5.86 6.12 Potter Valley Sate Park 43.84 T T 0.29 T 1.4 1.5 1.5 Potter Valley Sate Park 44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley David Sate Park 44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley David Sabe - Hay Camp 17.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quiten Sabe - Hay Camp 17.55 0 0 0 1.23 .38 2.07 1.89 Rancho Quiten Sabe - Hay Camp 17.55 0 0 0 1.23 .38 2.07 1.89 Rancho Quiten Sabe - Hay Camp 22.54 0 0 0 1.23 .38 2.97 1.89 Rancho Quiten Sabe - Hay Camp 22.54 0 0 0 0 1.23 .38 2.95 4.46 Rancho Quiten Sabe - Hay Camp 22.54 0 0 0 0 0 0 0 0 0 | NUMBER | - 1 | TOTAL | JUL
JUL | AUG | SEP | 00 | Š | DEC | JAN | FEB | MAR | APR | MAY | JUN | | Pico Blanco Boy Scout Camp M 0 0 0 11.10 .31 4.45 14.25 Pinnacles National Monument 16.15 0 0 0 .86 0 2.13 2.91 Point Arena 40.83 0 1.20 .86 7.31 3.51 5.18 3.72 Point Piedras Blancas 29.26 T 0 0 1.17 .23 5.80 6.12 Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Potter Valley State Park 43.84 T T 0.29 T 4.38 4.31 Potter Valley State Park 44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley State Park 44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley State Park 44.25 0 0 1.02 3.98 6.19 6.71 Rancho Quien Sabe - Hay Camp 17.55 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 18.55 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 1.02 3.98 1.46 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 0 0 0 3.08 3.88 | E2 6829 | Petaluma 1N | 27.22 | 0 | .05 | 1. | 7.21 | .45 | 2,96 | 48.4 | 2.74 | 4.43 | 00°† | .43 | 0 | | Pinnacles National Monument 16.15 0 0 0 0 0 0 0 2.13 2.91 Point Arena | D4 6856 | Pico Blanco Boy Scout Camp | M | 0 | 0 | | 01.11 | •31 | 4.45 | 14.29 | 79.11 | 9.84 | 9.84 10.22 | 盟 | MR | | Point Arena 10.83 0 0.4 0 6.83 1.6 1.64 2.28 Point Arena 140.83 0 1.20 36 7.31 3.51 5.18 3.72 Point Friedras Blancas 29.26 T 0 0 1.17 .23 5.80 6.12 Port Chicago NAD 23.13 0 T T 10.29 T 1.64 1.93 Porter Valles Park 143.84 T T T 0.22 T 1.64 1.93 Potter Valley 3NNW 644.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley 3NNW 147.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 147.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 147.89 0 .57 .90 9.56 3.98 1.96 1.47 Potter Valley P.H. 147.89 0 .77 .90 9.56 3.98
1.96 1.47 Rancho Quien Sabe 18.55 0 0 0 1.23 .33 1.96 1.47 Rancho Rico 29.54 0 .01 0.95 .34 1.28 1.96 1.47 Richmond 29.54 0 .01 .03 .35 8.50 6.90 Saint Helena 144.58 0 .01 .03 .38 1.78 1.96 3.91 Saint Halena 148.8W 53.82 0 .04 .23 1.77 1.07 5.38 8.58 Saint Maxy's College 10.56 0 0 0 1.03 0.9 1.73 2.81 Salinas FAA Airport 13.70 T .03 .01 .05 .40 1.73 2.81 Salinas Dam Anselmo 25.08 0 0 0 1.03 .02 1.05 1.05 1.00 Salinas Dam Anselmo 19.50 0 0 1.03 .04 5.91 1.80 Salinas Dam Anselmo 25.08 0 0 0 1.03 0.91 1.73 0.91 1.80 Salinas Dam Anselmo 19.50 0 0 1.03 0.91 1.13 0.91 1.18 Salinas Dam Anselmo 25.08 0 0 0 1.03 0.91 1.18 0.91 1.18 Salinas Dam Anselmo 19.50 0 0 0 1.03 0.91 1.18 0.91 1.18 Salinas Dam Anselmo 19.50 0 0 0 1.03 0.91 1.18 0.91 1.18 Salinas Dam Anselmo 19.50 0 0 0 1.03 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.91 1.18 0.9 | D2 6926 | Pinnacles National Monument | 16,15 | 0 | 0 | 0 | .86 | 0 | 2,13 | 2,91 | 2,33 | 4.25 | 3.07 | .15 | .45 | | Point Arena 40.83 0 1.20 .86 7.31 3.51 5.18 3.72 Point Piedras Blancas 29.26 T 0 0 1.17 .23 5.80 6.12 Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Porter Valley State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.31 Potter Valley State Park 43.84 T T T 10.29 T 4.38 4.36 Potter Valley State State Park 44.85 0 0 0 1.02 T 4.38 4.46 Rachood City 24.32 0 0 0 0 2.39 3.48 4.46 Richmond City 24.32 0 0 0 0 2.39 3.48 4.46 Richmond City 29.82 0 0 0 0 2.30 3.48 4.46 Saint Helena 44.58 0 0 0 0 2.30 3.5 8.50 Saint Mary's College 40.56 0 0 0 0 3.07 5.38 Sailnas PAA Airport 13.70 T 0.3 0.0 1.03 0.0 1.03 2.72 Salinas Dam 19.50 0 0 1.03 0.0 1.03 2.72 San Anselmo 22.08 0 0 1.03 0.0 1.03 0.0 1.03 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 1.03 0.0 1.03 0.0 1.03 0.0 San Anselmo 22.08 0 0 0 0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1.03 0.0 1. | E5 6991-05 | Pleasanton Nursery | 26.35 | 0 | ₹. | 0 | 6.83 | .45 | 1.64 | 2.28 | 6.71 | 4.25 | 3.67 | .51 | T | | Point Piedras Blancas 29.26 T 0 0 1.17 .23 5.80 6.12 Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Portola State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley 3RWW 644.11 0 .52 .87 63.92 3.73 5.63 6.88 Potter Valley 3RWW 147.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 17.55 0 0 1.02 3.8 1.96 1.47 Rancho Quien Sabe | F8 7009 | Point Arena | 40,83 | 0 | 1.20 | .86 | 7,31 | 3.51 | 5,18 | 3.72 | 3,59 | 6.83 | 7,65 | .92 | 90, | | Port Chicago NAD 23.13 0 T 0 8.05 .41 1.64 1.93 Portola State Park 43.84 T T 10.29 T 4.38 4.31 Potter Valley SNRW e44.11 0 .52 .87 8.92 3.73 5.63 6.88 Potter Valley SSE 33.53 0 .19 e.96 7.02 2.93 3.91 4.27 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 4.42 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 4.42 Potter Valley P.H. 47.89 0 .00 0 1.23 3.98 1.96 1.47 Rancho Quien Sabe - Hay Camp 17.55 0 0 0 1.23 3.88 1.96 1.47 Rancho Quien Sabe - Hay Camp 24.32 0 .01 0.05 7.38 1.90 Redwood City 24.32 0 .10 .03 7.38 9.90 3.48 4.20 Redwood City 24.32 0 .01 .03 7.38 8.58 8.58 Saint Helena LWSW 59.82 0 .01 .03 7.3 1.48 9.50 6.90 Saint Mary's College 40.56 0 .02 1.3 1.71 6.65 8.81 Saint Mary's College 40.56 0 .02 1.3 1.71 6.65 8.81 Sailinas ZE 14.53 0 .02 1.3 .01 1.73 2.81 Sailinas Dam 19.50 0 0 1.03 .02 1.09 2.72 Sailinas Dam 19.50 0 0 1.03 .02 1.09 2.72 Sailinas Dam 19.50 0 0 1.03 .02 1.09 .94 5.91 1.80 Sailinas Dam 19.50 0 0 1.03 .04 5.91 1.18 | D5 7024 | Point Piedras Blancas | 29.26 | -1 | 0 | 0 | 1.17 | .23 | 5.80 | 6.12 | 5.32 | 4.32 | 5.85 | 14. | ₽. | | Portola State Park | E4 7070 | Port Chicago NAD | 23.13 | 0 | € | 0 | 8.05 | 14. | 1.64 | 1.93 | 4.18 | 2.83 | 3.44 | .59 | % | | Potter Valley 3NNW ell.11 0 .52 .87 el.92 3.73 5.63 6.88 Potter Valley 3SE 33.53 0 .19 e.96 7.02 2.93 3.91 4.27 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Potter Valley P.H. 17.55 0 0 0 1.02 .38 1.96 1.47 1.89 Priest Valley P.H. 22.09 0 0 0 1.02 .38 1.96 1.47 1.89 1.90 Priest Valley P.H. 22.09 0 0 0 0 1.23 .38 2.07 1.89 1.40 Priest Valley P.H. 22.09 0 0 0 0 1.23 .38 2.07 1.89 1.40 Priest Valley P.H. 22.09 0 0 0 0 1.23 .38 2.07 1.89 1.40 Priest Pancho Rico P.H. 22.14 0 0.08 .01 9.05 .44 7.38 19.08 Priest P.H. 22.09 0 0 0 0 0 1.23 .33 2.82 4.46 Priest P.H. 23 24 Priest P.H. 25 Pries | E8 7086 | Portola State Park | 43.84 | E | E | | 10.29 | E | 4.38 | 4.31 | 7,68 | 6.97 | 8,98 | 1.23 | E | | Potter Valley 3SE 33.53 0 .19 e.96 7.02 2.93 3.91 4.27 Potter Valley P.H. 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Priest Valley P.H. 147.89 0 .57 .90 9.56 3.98 6.19 6.51 Quien Sabe - Hay Camp 17.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe - Hay Camp 17.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe - Hay Camp 18.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe - Hay Camp 22.54 0 0 0 0 1.23 .88 2.07 1.89 Richmond 29.54 0 .01 .01 6.39 .35 2.82 4.46 Richmond 29.54 0 .01 .06 7.38 .99 3.48 4.20 Richmond 29.54 0 .00 0 9.30 .35 8.56 6.90 2 Saint Helena 4WSW 53.82 0 .04 .23 11.77 1.07 5.38 8.58 Saint Mary's College 40.56 0 .08 .02 13.84 .99 3.07 5.82 Saint Mary's College 140.56 0 .08 .02 13.84 .99 3.07 5.82 Saint Mary's College 140.56 0 .08 .02 13.84 .99 3.07 5.82 Sailnas PAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 Sailnas Dam 19.50 0 0 10 1.03 .02 1.09 2.72 Sallnas Dam 19.50 0 0 10 1.03 .01 1.03 .02 1.09 2.72 | F9 7107 | Potter Valley 3NNW | el44.11 | 0 | .52 | | 26.8 | 3.73 | 5,63 | 6.88 | 2.56 | 6.61 | 7.61 | 99. | e,12 | | Potter Valley P.H. \(\pi\) 47.89 0 .57 .90 9.56 3.98 6.19 6.51 Quien Sabe - Hay Camp 17.55 0 0 T 1.43 .05 2.99 \(\pi\) 2.1 Quien Sabe - Hay Camp 17.55 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe 18.55 0 0 0 1.02 .38 2.07 1.89 2.1 Rancho Quien Sabe 18.55 0 .00 0 1.02 .38 2.07 1.47 Redwood City 24.32 0 .01 .03 .01 6.39 .34 4.46 Richmond 29.34 0 .10 .03 .03 .35 8.56 6.90 2.86 Richmond 29.38 0 .01 .02 7.38 .95 3.48 4.26 Raint Helena WSW 59.82 0 .04 .23 1.77 1.07 5.38 | F9 7108 | Potter Valley 3SE | 33.53 | 0 | .19 | 96°- | | 2.93 | 3.91 | 4.27 | 1,33 | 5.63 | 6.38 | .81 | .10 | | Quien Sabe - Hay Camp 22.09 0 T 1.43 .05 2.99 4.42 Quien Sabe - Hay Camp 17.55 0 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe 18.55 0 0 0 1.23 .38 2.07 1.89 Rancho Quien Sabe 18.55 0 0 0 1.23 .38 2.07 1.89 Redwood City 24.32 0 .01 .03 .01 5.05 .44 7.38 19.08 Richmond 29.54 0 .10 .06 7.38 .99 3.48 4.26 Saint Helena 44.58 0 .0 9.30 .35 8.56 6.90 Saint Helena 4WSW 53.82 0 .0 .0 .0 .0 .0 .0 .0 .0 9.30 8.85 8.85 Saint Helena 4WSW 53.82 0 .0 .0 .0 .0 .0 | F9 7109 | Potter Valley P.H. | 47.89 | 0 | .57 | .90 | 9.56 | 3.98 | 6.19 | 6.51 | 3.47 | 7.63 | 8.28 | .67 | e,13 | | Quien Sabe - Hay Camp 17.55 0 0 1.02 .38 1.96 1.47 Rancho Quien Sabe 18.55 0 0 1.23 .38 2.07 1.89 21 Rancho Quien Sabe 18.55 0 0 0 1.23 .38 2.07 1.89 21 Rancho Rico 63.14 0 .08 .01 9.05 .44 7.38 19.08 Redwood City 24.32 0 .01 .01 6.39 .33 2.82 4.46 Ol Rockworlt Ranch 29.54 0 .0 0 9.30 .35 8.50 6.90 Saint Helena 44.58 0 .0 0 9.30 .35 8.50 6.90 8.81 Saint Helena 4wSW 53.82 0 .0 .0 .0 .0 9.30 .35 8.51 8.81 Saint Helena 4wSW 53.82 0 .0 .0 .0 .0 .0 | D2 7150 | Priest Valley | 22.09 | 0 | 0 | €⊣ | 1.43 | .9 | 2.99 | 4.42 | 4.54 | 4.36 | 3.59 | .56 | .15 | | Rancho Quien Sabe 18.55 0 0 0 1.23 .38 2.07 1.89 | D1 7190 | Quien Sabe - Hay Camp | 17,55 | 0 | 0 | 0 | 1,02 | .38 | 1.96 | 1.47 | 4.50 | 2,72 | 4,44 | 23 | 28 | | Redwood City 24,32 0 .03 6.39 .44 7.38 19.08 Redwood City 24,32 0 .01 6.39 .33 2.82 4.46 1.20 Richmond 29,54 0 .10 .08 7.38 .99 3.48 4.20 1.20 | D1 7249 | Rancho Quien Sabe | 18.55 | 0 | 0 | 0 | 1.23 | •38 | 2.07 | 1.89 | 4.62 | 2.96 | 4.43 | .79 | .18 | | Redwood City 24,32 0 .01 6,39 .33 2.82 4.46 Richmond | D4 7249-21 | Rancho Rico | 63.14 | 0 | æ. | 10. | 9.05 | 7. | 7.38 | 19.08 | 6.32 | | 8.49 11.38 | .72 | .19 | | Richmond 29.54 0 .10 .08 7.38 .99 3.48 4.20 Roosevelt Ranch 59.82 0 0 0 9.30
.35 8.50 6.90 Saint Helena 4wSw 53.82 0 .12 .73 14.80 1.71 6.65 8.81 Saint Mary's College 40.56 0 .08 .02 13.84 .99 3.07 5.82 Salinas PAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 Salinas Dam 19.50 0 0 1.03 .02 1.09 2.72 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 | E7 7339 | Redwood City | 24.32 | 0 | .01 | .01 | 6.39 | .33 | 2.82 | | 3.20 | 3.63 | 2,92 | .55 | EH | | Ol Roosevelt Ranch 59.82 | 医4 7414 | Richmond | 29.54 | 0 | .10 | 8. | 7.38 | .99 | 3.48 | 4.20 | 3.47 | 4.20 | 5.14 | .50 | 0 | | Saint Helena 44,58 0 .04 .23 11.77 1.07 5.38 8.58 Saint Helena 4wSw 53.82 0 .12 .73 14.80 1.71 6.65 8.81 Saint Mary's College 40.56 0 .08 .02 13.84 .99 3.07 5.82 Salinas 2E 14.53 0 .02 T .61 .38 1.78 2.95 Salinas FAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 Salinas Dam 19.50 0 0 0 1.03 .02 1.09 2.72 | D4 7539-01 | Roosevelt Ranch | 59.82 | 0 | 0 | 0 | 9.30 | .35 | 8.50 | 6.90 | 20.05 | 5.49 | 8.61 | .53 | 8 | | Saint Helena 4WSW 53.82 0 .12 .73 14.80 1.71 6.65 8.81 solution and saint Mary's College 40.56 0 .08 .02 13.84 .99 3.07 5.82 salinas 2E 14.53 0 .02 T .61 .38 1.78 2.95 salinas PAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 salinas Dam 19.50 0 0 0 1.03 .02 1.09 2.72 salinas Dam 52.08 0 .01 T 12.99 .84 5.91 11.80 | E3 7643 | Saint Helena | 44.58 | 0 | ਰੋ. | .23 | 77.11 | 1.07 | 5.38 | 8.58 | 4.63 | 6.07 | 6.54 | .57 | 0 | | Salinas PAA Airport 13.70 T .03 .01 T .03 .02 1.03 .02 1.03 2.72 5.82 Salinas Dam 19.50 0 0 0 1.03 .01 T .03 .01 T .03 .02 1.03 0.01 T .03 .03 1.03 0.01 T .03 0.03 0.01 T .03 0.03 0.03 0.03 0.03 0.03 0.03 0.0 | E3 7646 | Saint Helena 4WSW | 53.82 | 0 | .12 | | 14.80 | 1.71 | 6.65 | 8.81 | 3.51 | 7.87 | 8.42 1.20 | 1.20 | 0 | | Salinas FAA Airport 13.70 T .03 .01 .65 .40 1.73 2.95 .01 Salinas Dam 19.50 0 0 0 1.03 .02 1.03 2.72 .03 .04 1.03 .05 1.09 2.72 .04 1.03 .05 1.09 2.72 .05 1.09 2.72 .05 1.09 2.72 .05 1.09 2.72 .05 1.09 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | E4 7661 | Saint Mary's College | 40.56 | 0 | 8 | | 13.84 | 66. | 3.07 | 5.82 | 4.99 | 4.90 | 5.96 | 92. | .13 | | Salinas FAA Airport 13.70 T .03 .01 .65 .40 1.73 2.81 Salinas Dam 19.50 0 0 0 1.03 .02 1.09 2.72 .01 San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 | D2 7668 | Salinas 2E | 14.53 | 0 | .8 | € | .61 | .38 | 1.78 | 2,95 | 9.20 | 3.25 | 3.17 | .17 | 0 | | 01 San Anselmo 52.08 0 0 0 0 1.03 .02 1.09 2.72 | D2 7669 | Salinas FAA Airport | 13.70 | H | • 03 | 요. | .65 | 04. | 1.73 | 2,81 | 1.95 | 3.00 | 2.95 | 91. | .01 | | San Anselmo 52.08 0 .01 T 12.99 .84 5.91 11.80 | D3 7672 | Salinas Dam | 19,50 | 0 | 0 | 0 | 1.03 | 8. | 1.09 | 2.72 | 5.89 | 4.43 | 3.69 | % | .03 | | | E2 7701-01 | San Anselmo | 52.08 | 0 | 6 | | 12.99 | 48. | - 1 | 11.80 | 5.69 | 8.12 | 6.17 | -55 | 0 | | NUMBER | STATION NAME | TOTAL | JUL | AUG | SEP | DOCT | NOV | DEC | JAN | FFB | MAR | APR | MAY | 2 | |------------|-------------------------------|---------|-----|------|-----|-------|------|------|--------|------|------|-----------|------|-----| | | | - | , | , | | | 1 | | | | | - | | | | D3 7714 | San Antonio Mission | 24.35 | 0 | 0 | E | 1.8 | 8 | 2.83 | χ
ζ | 3.94 | 3.71 | 90.4 | .50 | 귀 | | D2 7716 | San Ardo | 14.44 | 0 | 0 | 0 | •33 | 0 | 2.26 | 2.99 | 4.19 | 2.65 | 1.77 | .25 | 0 | | D1 7719 | San Benito | 14.48 | 0 | 0 | 0 | .56 | 0 | 2.25 | 3.28 | 1.89 | 3.42 | 2.39 | .35 | .34 | | D4 7731 | San Clemente Dam | 22.79 | 0 | 0 | 0 | 1.81 | .10 | 2.29 | 5.37 | 4.53 | 4.27 | 4.14 | .23 | .05 | | D1 7755 | San Felipe Highway Station | 21.20 | 0 | 0 | 0 | 1.67 | .28 | 1.68 | 6.16 | 2.89 | 3.29 | 4.75 | .37 | .11 | | E8 7767 | San Francisco Richmond Sunsec | : 26.72 | H | 0 | .15 | 7.94 | 0 | 3.75 | 4.45 | 2.00 | 4.65 | 3.23 | .55 | 0 | | E7 7769 | San Francisco WBAP | 25.39 | H | 8 | 8 | 7.30 | .36 | 2.97 | 4.47 | 2.03 | 3.94 | 3.70 | .50 | H | | E7 7772 | San Francisco FOB | 22,15 | E | .07 | .22 | 5,51 | 99. | 2.81 | 3,35 | 1,92 | 3.87 | 3,35 | ,45 | H | | E8 7807 | San Gregorio 3SE | 37.68 | % | .27 | 4€. | 8.47 | ₹8° | 4.07 | 6.10 | 4.16 | 6.14 | 6.15 1.01 | 1.01 | .07 | | E6 7821 | San Jose | 20.24 | 0 | E→ | EH | 4.59 | .28 | 2.00 | 3.99 | 2.23 | 3.53 | 3.08 | .52 | .02 | | E6 7824 | San Jose Decid FFS | 21.24 | 0 | E | EH | 4.14 | .25 | 2.06 | 2.97 | 3.67 | 3.63 | 3.80 | .72 | 0 | | D1 7835 | San Juan Bautista Mission | 19.22 | 0 | 0 | 0 | 1.36 | .29 | 2.46 | 4.20 | 4.00 | 3.31 | 3.33 | 42° | .03 | | E7 7864 | San Mateo | 27.93 | 0 | .05 | H | 9.48 | .31 | 2.60 | 2.87 | 3.32 | 3.72 | 5.02 | .56 | H | | E2 7880 | San Rafael | 47.02 | 0 | e.10 | .01 | 10.04 | .86 | 95.9 | 11.60 | 4.41 | 6.87 | 6.16 | .41 | 0 | | E2 7880-08 | San Rafael National Bank | 16.71 | 0 | 8. | .01 | 11.13 | .91 | 5.09 | 8.69 | 6.77 | 7.41 | 6.12 | .50 | 0 | | E6 7912 | Santa Clara University | 18.83 | 0 | 0 | 0 | 4.16 | 80. | 2.01 | 3.30 | 1.90 | 3.56 | 3.31 | .51 | EH | | DO 7916 | Santa Cruz | 33.86 | 0 | કે. | .31 | 2.95 | 8. | 3.70 | 7.15 | 4.91 | 5.81 | 7.41 | .55 | .03 | | F9 7964 | Santa Rosa Sewage Plant | 31.24 | 0 | 8, | 42. | 7.81 | .83 | 4.40 | 4.87 | 2.08 | 4.94 | 5.42 | .56 | 0 | | F9 7965 | Santa Rosa | 35.64 | 0 | 8 | .36 | 74.6 | .95 | 49.4 | 3.75 | 4.22 | 4.94 | 6.57 | 99. | 0 | | E6 7998-01 | Saratoga - Clark | 27.81 | 0 | 0 | 0 | 6.87 | .19 | 2.37 | 4.68 | 4.60 | 4.36 | 4.22 | .52 | H | | E6 7998-03 | Saratoga - Kriege | 30.06 | 0 | 0 | 0 | 7.01 | .26 | 2.73 | 5.85 | 5.36 | 4.30 | 4.02 | .53 | H | | E6 8068 | Searsville Lake | 34.98 | 0 | ਰੋ. | .05 | 8.65 | 1.02 | 3.43 | 3.99 | 5.58 | 5.66 | 5.88 | .68 | 0 | | F9 8072 | Sebastopol 4SSE | 33.15 | 0 | 8. | •39 | 8.75 | •73 | 3.60 | 96.4 | 2.59 | 5.48 | 5.87 | 69. | 0 | | F9 8272 | Skagg Spg. Las Lomas Ranch | 70,81 | 0 | .59 | .56 | 15.42 | 2.75 | 7.95 | 6.00 | 9.71 | 9.72 | 12.58 | 2,42 | .02 | | D2 8276 | Slack Canyon | 18.29 | 0 | 0 | 0 | .87 | •03 | 2,86 | 3.75 | 4.33 | 2,86 | 2.81 | 99. | .12 | | | | | | | | | | | | | | l | | | #### 7-17 | NUMBER | STATION NAME | TOTAL | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | NOS. | |------------|------------------------------|--------|----------------|-----|------|-------|------|------|------------|-------|------------------|-----------|------|----------------| | D2 8338-01 | Soledad C.T.F. | 11,40 | 0 | 0 | 0 | .25 | ਰ | 1.78 | 2.46 | 21.2 | 2.65 | 1.73 | 17 | .23 | | D2 8338 | Soledad | 12,36 | 0 | .01 | ٥. | .33 | % | 1,82 | 2,67 | 2,32 | 2,62 | 2,13 | .19 | 20 | | E2 8351 | Sonoma | 34.40 | 0 | EH | 94. | 9,12 | 69. | 4.57 | 5.77 | 2,94 | 4,86 | 5,28 | .77 | 0 | | D2 8446 | Spreckels Highway Br. | 14.02 | 0 | E | 0 | .63 | .29 | 1.87 | 1.67 | 2.84 | 3.31 | 3,16 | ,24 | р. | | D2 8446-01 | Spreckels | 12.99 | 0 | 0 | 0 | .55 | .31 | 1.86 | 2.26 | 1.90 | 3.22 | 2.68 | .21 | 0 | | E6 8447 | Spreckels Hill - Laguna Seca | 27.02 | 0 | 0 | 0 | 6.81 | •23 | 1.92 | 6.57 | 3.94 | 3.63 | 3.58 | -34 | e _o | | E6 8519 | Stevens Creek Reservoir | 34.84 | 0 | EH | EH | 7.87 | ±8. | 3.18 | 5.40 | 6.59 | 5.20 | 5.20 | 1.06 | e _o | | D6 8627 | Suey Ranch | 13.53 | 0 | 0 | 0 | .54 | 0 | .42 | 1.01 | 4.05 | 3.53 | 3.10 | 88. | 0 | | D1 8680 | Sunset Beach State Park | 23.89 | 0 | 8 | 0 | 2.22 | .27 | 2.93 | 6.24 | 3.17 | 4.30 | 84.4 | .19 | 0 | | F9 8776-01 | Talmage | 37.34 | 0 | .15 | 92. | 7.19 | 2.81 | 4.53 | 4.07 | 14.51 | 6.26 | 6.21 | .85 | 0 | | E2 8779 | Temalpais Valley | 40.19 | 0 | .12 | 1.05 | 9.28 | 1.47 | 5.15 | 5.35 | 4.48 | 5.48 | 7.06 | .75 | 0 | | рз 8849 | Templeton | 17.70 | 0 | 0 | 0 | 0 | EH | 2.32 | 2.67 | 5,65 | 3.58 | 3.08 | .39 | .01 | | F9 8885 | The Geysers | e68.06 | 0 | .19 | 74. | 14.85 | 2.26 | 8.14 | 8.14 [4.30 | | 4.58 10.10 10.59 | 10.59 | 2.58 | 0 | | E2 8920-21 | Tiburon - Topham | 148.03 | 0 | .01 | .87 | 11.15 | .75 | 6.18 | 7.10 | 6.72 | 7.65 | 47.9 | -87 | 0 | | E3 9006 | Travis Air Force Base | 24.55 | 0 | .01 | .01 | 42.4 | 84. | 2,45 | 4.56 | 2.83 | 4.60 | 4.11 | .72 | ਰੋ | | F9 9122 | Ukiah | 144.22 | 0 | .20 | .68 | 7.74 | 3.09 | 5.25 | 7.75 | 3.22 | 7.61 | 7.61 | 1.07 | EH | | F9 9124 | Ukiah 4WSW | e54.93 | e _o | .36 | .87 | 9.24 | 3.64 | 5.60 | 4.36 | 99.9 | 9.05 | 9.87 1.28 | 1.28 | E | | рб 9179 | Upper Morro Creek | 30.47 | 0 | 0 | 0 | 2.26 | 01. | 3.18 | 5.79 | 6.03 | 6.26 | 5.72 | .81 | .32 | | E4 9185 | Upper San Leandro Filters | 35.13 | 0 | .14 | •43 | 13.13 | .95 | 2,97 | 2,62 | 4.47 | 4.09 | 5,64 | 99 | 0 | | D1 9189 | Upper Tres Pinos | 13.38 | 0 | 0 | 0 | .71 | .16 | 2.19 | 2.29 | 2.13 | 3,30 | 2.30 | •30 | 0 | | D3 9221 | Valleton | 14.56 | 0 | 0 | 0 | .29 | 0 | 2.47 | 3.37 | 3.49 | 2.64 | 1.89 | .41 | 0 | | Еб 9270 | Vasona Reservoir | × | А | 89. | А | А | А | 2.66 | 6.19 | 45.4 | 4.31 | 4.35 | ∄. | А | | F9 9273 | Venado | e70.54 | 0 | 64. | 9. | 13.52 | 3.20 | 8.78 | 15.97 | 5.62 | 9.75 | 10.71 | 1.90 | 0 | | E3 9305 | Veterans Home | 41.37 | 0 | 8 | EH | 11.76 | 1.02 | 5.18 | 7.07 | 2.75 | 6.97 | 5.97 | .63 | 0 | | E4 9420 | Walmar School | 31.98 | 0 | % | E | 10.99 | 64. | 2.19 | 6.27 | 3.34 | 3.82 | 4.10 | .72 | 0 | TABLE A-2 | SCN | 90. | • 05 | .01 | .01 | 0 | 11. | 0 | 0 | 0 | | | | | | | | | |--------------|-------------------
-------------------|-----------------|------------------|--------------|-------------------|-----------|------------|-------------|--|--|---|--|--|--|--|--| | MAY | .67 | .62 | .71 | .20 | .65 | 7.15 1.06 | .85 | .76 | 2.12 | | | | | | | | | | APR | 3.92 | 3.47 | 3.35 | 6.20 | 5.08 | 1 1 | 8.21 | 6.33 10.49 | 9.48 2.12 | | | | | | | | | | MAR | 3,42 | 2.96 | 2.97 | 4.39 | 5.19 | | 7.44 | - 1 | | | | | | | | | | | FEB | 3.17 5.30 | 5.62 62.00 | 2.36 4.61 | 5.90 4.78 | 4.16 4.62 | 6.29 | 4.77 | 8.94 | 4.73 | | | | | | | | | | JAN | | 5.62 | | 5.90 | 4.16 | 2.90 6.54 | 5.58 9.86 | 6.07 15.91 | 6.42 \$1.74 | | | | | | | | | | DEC | .41 1.84 | 1.74 | 1.59 | 2.92 | 2.77 | | | 6.07 | | | | | | | | | | | NOV | .41 | .34 | •35 | •53 | 74. | 1.34 | 1.44 | 92 | 3.11 | | | | | | | | | | OCT | 10.74 | e9.71 | 9.13 | 3.81 | 2.50 | .22 12.85 | .12 12.06 | 18.0Z | | | | | | | | | | | SEP | E | 0 | 0 | .01 | 8 | •25 | .12 | a | 74. | | | | | | | | | | AUG | •05 | % | -00 | .10 | .10 | -14 | .10 | 22 | ,34° | | | | | | | | | | JUL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | a | 0 | | | | | | | | | | TOTAL | 29.58 | e26.57 | 25.15 | 28.85 | 25.63 | 00.94 | 50.43 | 67.71 | e57.91 | | | | | | | | | | STATION NAME | Walnut Creek 2ESE | Walnut Creek ZENE | Walnut Creek 4E | Watsonville W.W. | Wilder Ranch | Wild Horse Valley | Woodacre | Wrights | Yorkville | | | | | | | | | | NUMBER | Е4 9423 | E4 9426 | E4 9427 | D1 9473 | DO 9675 | ЕЗ 9675-41 | F9 9770 | E6 9814 | F8 9851 | | | · | | | | | | | 96 93 88 84 47 37 37 37 37 37 37 37 37 37 37 37 37 37 | NAME | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | NOC | |--|------------------|------|------|------|------|------|------|------|------|------|------|------|------| | Min 48 47 37 37 Avg Max 80.7 82.3 78.4 71.7 Avg Min 51.6 53.6 49.1 47.1 Avg Min 51.6 53.6 49.1 47.1 Min 49 48 47 44 Avg Min 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min 50.0 50.0 50.0 50.0 Avg Min 50.0 50.0 <t< th=""><th></th><th>90</th><th>96</th><th>93</th><th>88</th><th>82</th><th>73</th><th>65</th><th>77</th><th>75</th><th>73</th><th>89</th><th>93</th></t<> | | 90 | 96 | 93 | 88 | 82 | 73 | 65 | 77 | 75 | 73 | 89 | 93 | | Avg Max 80.7 82.3 78.4 71.7 Avg Min 51.6 53.6 49.1 47.1 Avg Min 51.6 53.6 49.1 47.1 Min 49 48 47 44 Avg Max 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Avg Min 50.0 53.3 51.2 51.1 Avg Min 46 45 42 40 Avg Min 53.3 51.7 49.4 50.5 Avg Min D D D D Avg Min D D D D Avg Min D D D D Avg Min B 99 87 86 Avg Min 43 46 42 80 Avg Min | | 48 | 47 | 37 | 37 | 31 | 28 | 22 | 37 | 34 | 35 | 39 | 44 | | Avg Min 51.6 53.6 49.1 47.1 0064 Alamo IN Max 99 100 93 59.4 0064 Alamo IN Min 49 48 47 44 Avg Max 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Avg Min 46 45 40 40 Min 46 45 40 40 40 40 Avg Min 53.3 51.7 49.4 50.5 50.6 Avg Min D D D D D D Avg Min D D < | Max | 80.7 | 82.3 | 78.4 | 71.7 | 66.3 | 59.4 | 55.7 | 67.0 | 63.5 | 63.4 | 70.5 | 80.0 | | Mox Avg 66.2 68.0 63.8 59.4 0064 Alamo IN Min 49 100 93 90 0064 Alamo IN Min 49 48 47 44 Min Avg Min 50.0 53.3 51.2 51.1 Avg Min 50.0 53.3 51.2 51.1 Avg Min 50.0 53.3 51.2 51.1 Avg Min 46 45 40 60.0 60.0 Min Avg 87.5 86.1 81.6 68.7 68.7 Avg Min 53.3 51.7 49.4 50.5 59.6 Min Avg Min 53.3 51.7 49.4 50.5 66.6 61.0 90.6 Mox Avg Min D D D D D D D D D D D D D D < | Min | 51.6 | 53.6 | 49.1 | 47.1 | 43.3 | 39.0 | 34.0 | 45.7 | 40.3 | 44.3 | 49.4 | 50.4 | | Mode Alamo IN Max 99 100 93 90 Min 49 48 47 44 Min 49 48 47 44 Min 80.0 53.3 51.2 70.8 Avg Min 50.0 53.3 51.2 51.1 Avg Min 50.0 53.3 51.2 51.1 Min 46 45 42 40 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min 50.0 50.0 50.0 50.0 50.0 Avg Max D D D D D D Avg Max D D | | 66.2 | 68.0 | 63.8 | 59.4 | 54.8 | 49.2 | 6.44 | 56.0 | 51.9 | 53.9 | 0.09 | 65.2 | | Min 49 48 47 44 Avg Max 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Max 87.5 86.1 81.6 68.7 Angwin Pacific Union College Max 87.5 86.1 86.5 50.6 Ang Max 87.5 86.1 86.5 59.6 Atascadero H.M.S. Max D D D D Ang Max D D D D D D Ben Lomond Max 88 99 87 86 99 88 99 88 99 88 98 78 73 0 | | 99 | 100 | 93 | 06 | 78 | 65 | 09 | 71 | 71 | 73 | 88 | 97 | | Avg Min 78.2 86.1 82.0 70.8 Avg Min 50.0 53.3 51.2 51.1 Angwin Pacific Union College Max 97 100 94 82 Min 46 45 42 40 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min D D D D Avg Max D D D D Avg Max D D D D Ben Lomond Max 88 99 87 86 Avg Max 18.1 446 42 38 98 | | 64 | 48 | 47 | 777 | 32 | 25 | 24 | 37 | 32 | 33 | 40 | 747 | | Avg Min 50.0 53.3 51.2 51.1 Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Min 46 45 42 40 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min D D D D D Avg Min D D D D D Ben Lomond Max 88 99 87 86 Avg Max 78.1 46 42 38 38 | Avg Max | 78.2 | 86.1 | 82.0 | 70.8 | 65.1 | 53.9 | 51.2 | 65.3 | 63.2 | 64.5 | 71.6 | 79.3 | | Angwin Pacific Union College Max 97 100 94 82 Angwin Pacific Union College Max 97 100 94 82 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min D D D D D D D D D D D D D D D D D D D | Min | 50.0 | 53,3 | 51.2 | 51,1 | 43.2 | 38.5 | 32.2 | 45.7 | 38.7 | 45.4 | 49.1 | 50,8 | | Angwin Pacific Union College Max 97 100 94 82 Min 46 45 42 40 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Avg Min 53.3 51.7 49.4 50.5 Avg Min D | | 64.1 | 69.7 | | | 54.1 | 46.2 | 42.2 | 55,5 | 51.0 | 53.5 | 60.4 | 65.1 | | Min 46 45 42 40 Avg Max 87.5 86.1 81.6 68.7 Avg Min 53.3 51.7 49.4 50.5 Atascadero H.M.S. Max D D D D Min D D D D D D Atascadero H.M.S. Min D D D D D Atascadero H.M.S. Min D D D D D D Atascadero H.M.S. Min D | nion College Max | 97 | 100 | 94 | 82 | 78 | 99 | 94 | 71 | 68 | 69 | 85 | 98 | | Avg Max 87.5 86.1 81.6 68.7
Avg Min 53.3 51.7 49.4 50.5 Atascadero H.M.S. Max D D D D Atascadero H.M.S. Min D D D D D Atascadero H.M.S. Min D D D D D D Atascadero H.M.S. Min D | | 46 | 45 | 42 | 40 | 35 | 29 | 27 | 38 | 26 | 27 | 34 | 41 | | Avg Min 53.3 51.7 49.4 Akascadero H.M.S. Mox D D D Min D D D D Avg Min D D D D Ben Lomond Min 43 46 42 Avg Min 43 46 42 Avg Min 78 78 78 78 78 | Max | | 86,1 | 81.6 | 68.7 | 61.5 | 55.7 | 52.8 | 60,5 | 55.5 | 55.7 | 6.79 | 79.5 | | Atascadero H.M.S. Atascadero H.M.S. Min Avg Max D D D D D Avg Min | | 53,3 | 51.7 | 49.4 | 50°2 | 45.3 | 45.6 | 35.7 | 45.8 | 36.7 | 36.9 | 45.9 | 48.4 | | Atascadero H.M.S. Max D | Avg | 70.4 | 68.9 | 65.5 | 59.6 | 53.4 | 49.2 | 44.3 | 53.2 | 46,1 | 46.3 | 56.9 | 64.0 | | Min D | Max | D | Q | D | D | D | Ω | 70 | 62 | 92 | 80 | 92 | 100 | | Avg Max D </th <th>Min</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th> <th>D</th> <th>Q</th> <th>17</th> <th>34</th> <th>30</th> <th>32</th> <th>38</th> <th>94</th> | Min | D | D | D | D | D | Q | 17 | 34 | 30 | 32 | 38 | 94 | | Avg Min D </th <th></th> <th>D</th> <th>Д</th> <th>Д</th> <th>D</th> <th>D</th> <th>Q</th> <th>9.09</th> <th>68.4</th> <th>65.4</th> <th>4.99</th> <th>74.8</th> <th>82,3</th> | | D | Д | Д | D | D | Q | 9.09 | 68.4 | 65.4 | 4.99 | 74.8 | 82,3 | | 0674 Ben Lomond Mox 88 99 87 86 Min 43 46 42 38 | Avg Min | Q | Д | Д | D | D | Q | 31.8 | 45.9 | 37.7 | 40.3 | 47.8 | 50.0 | | 0674 Ben Lomond Max 88 99 87 86 Min 43 46 42 38 Avg Mr 78 1 84 42 38 | Avg | D | Ω | D | Ω | Ω | Д | 46.2 | 57.2 | 51.6 | 53.4 | 61,3 | 66.2 | | 43 46 42 38
May 78 1 84 6 78 4 73 | Мах | 88 | 66 | 87 | 86 | 82 | 89 | 64 | 75 | 74 | 73 | 83 | 85 | | 27 4 6 78 4 73 | | 43 | 94 | 42 | 38 | 31 | 25 | 22 | 32 | 30 | 33 | 39 | 42 | | 04.0 10.40 | Avg Max 78.1 | 78.1 | 84.6 | 78.4 | 73.0 | 68.8 | 58,1 | 56.4 | 62.9 | 60.1 | 61.4 | 69.2 | 75.6 | | Avg Min 47.3 49.3 47.7 44.8 | Avg Min | 47.3 | 49.3 | 47.7 | 44.8 | 40.6 | 38.4 | 32.9 | 43.4 | 37.8 | 40.9 | 45.2 | 46.6 | | Avg 62,7 67,0 63,1 58,9 | | 62.7 | 0°29 | | 58,9 | 54.7 | 48,3 | 44.7 | 54,7 | 49.0 | 51.2 | 57.2 | 61.1 | TABLE A-3 | NIMBER | PANN NOITATA | | HH | ٠
١ | GED | TOC | 700 | 010 | NAL | ann | QVN | aa v | V4.44 | 3 | |--------|-----------------------------|--------------|------|--------|------|------|------|------|-------|------|-------|------|-------|------| | | | | 200 | 202 | 2 | 5 | | 2 | 2 | מט | LAM | | Z E | | | | Berkeley | Max | 72 | 87 | 78 | 79 | 77 | - 29 | 63 | 70 | 89 | 72 | 78 | 77 | | | | Min | 50 | 48 | 51 | 48 | 39 | 34 | 33 | 45 | 39 | 39 | 45 | 64 | | | | Avg Max | 66.2 | 70.5 | 66.5 | 67.3 | 64.1 | 58.4 | 54.2 | 63.9 | 60.4 | 60.7 | 6,49 | 68,2 | | | | Avg Min | 52.0 | 54.8 | 53,4 | 52.6 | 48.9 | 44.0 | 39.5 | 50.8 | 6.44 | 9.94 | 51.4 | 52.6 | | | | Avg | 59.1 | 62.7 | 0.09 | 0.09 | 56.5 | 51.2 | 6°94 | 57.4 | 52.7 | 53.7 | 58.2 | 60.4 | | | Burlingame | Max | 85 | 98 | 86 | 78 | 92 | 65 | 99 | 69 | 69 | 71 | 84 | 79 | | | | Min | 47 | 47 | 44 | 41 | 34 | 29 | 25 | 36 | 34 | 35 | 41 | 42 | | | | Avg Max | 72.6 | 76,3 | 72,3 | 69.2 | 65.3 | 56.6 | 55.1 | 64.5 | 62.7 | 63,3 | 69.2 | 72.6 | | | | Avg Min | 52.6 | 54.0 | 50.5 | 50.1 | 45.7 | 42.2 | 35.4 | 47.7 | 41.2 | 43.3 | 49.7 | 48.2 | | | | Avg | 62.6 | 65.2 | 61,4 | 59.7 | 52°2 | 49.4 | 45.3 | 56.1 | 52.0 | 53.5 | 59°5 | 60°4 | | | Carmel Valley | Max | 87 | 104 | 92 | 92 | 96 | 83 | 77 | 81 | 75 | 73 | 80 | 83 | | | | Min | 39 | 42 | 40 | 36 | 30 | 27 | 23 | 38 | 32 | 36 | 37 | 39 | | | | Avg Max 75.0 | 75.0 | 82.2 | 76.5 | 77.7 | 70.9 | 4°99 | 62.8 | 68.7 | 63,5 | 63.0 | 66.4 | 71.6 | | | | Avg Min | 0.94 | 48.5 | 47.1 | 47.2 | 42.8 | 39.4 | 35.0 | 45.0 | 38.1 | 41.4 | 46.4 | 46.7 | | | | Avg | 60,5 | 65.4 | 61.8 | 62.5 | 56.9 | 52.9 | 48.9 | 56.9 | 50.8 | 52,2 | 56.4 | 59.2 | | | Cloverdale 3 SSE | Max | 103 | 104 | 66 | 92 | 98 | 69 | 89 | 78 | 92 | М | 93 | 98 | | | | Min | 47 | 45 | 47 | 94 | 37 | 26 | 26 | 38 | 32 | М | 37 | 94 | | | | Avg Max | 89,1 | 89.0 | 84.5 | 73.4 | 67.5 | 58.6 | 58.9 | 66.3 | 61.8 | M | 73.6 | 81.2 | | | | Avg Min | 50°2 | 54.3 | 50.8 | 50.2 | 45.7 | 39°6 | 33.5 | 46.8 | 40.9 | M | 47.8 | 50.3 | | | | Avg | 8.69 | 71.7 | 67°7 | 61.8 | 56.6 | 49.1 | 46.2 | 56.6 | 51.4 | M | 60.7 | 65.8 | | 2105 | Coyote Dam (Lake Mendocino) | Max | 104 | 103 | 102 | 94 | 87 | 74 | 89 | 7.5 | 71 | 74 | 90 | 102 | | | | M. | 45 | 43 | 43 | 38 | 32 | 20 | 15 | 30 | 25 | 30 | 34 | 40 | | | | Avg Max | 95 | 90.7 | 89.9 | 76.7 | 69°4 | 65.9 | 58.0 | 9°49 | 61,3 | 59.4 | 71.9 | 83.8 | | | | Avg Min | 52.2 | 52.5 | 48.2 | 44.1 | 39.5 | 37.3 | 27.8 | 43.2 | 33.9 | 37.5 | 43.7 | 48.4 | | | | Ava | 73.6 | 71.6 | 69 1 | 7 09 | ٦/ ٢ | 50 1 | 7.2 9 | 53 0 | 7.7 6 | 0.7 | 0 | 1 99 | | NUMBER | STATION NAME | | JUL | AUG | SEP | ОСТ | NOV | DEC | JAN | FEB. | MAR | APR | MAY | NOC | |---------|--------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------| | E6 2109 | Coyote Reservoir | Max | 96 | 100 | 98 | 95 | 85 | 72 | 99 | 74 | 70 | 72 | 90 | 94 | | | | Min | 45 | 45 | 41 | 37 | 28 | 23 | 18 | 35 | 30 | 32 | 35 | 40 | | | | Avg Max | 86.1 | 87.8 | 82.1 | 72.3 | 0.99 | 0.09 | 56.3 | 65.2 | 8.09 | 61.6 | 69.3 | 7.77 | | | | Avg Min | 48.3 | 50.7 | 48.1 | 45.6 | 40.2 | 35.9 | 29.5 | 9.44 | 37.1 | 41.0 | 46.5 | 47.6 | | | | Avg | 67.2 | 69.2 | 65.1 | 59.0 | 53,1 | 48.0 | 42.9 | 54.9 | 49.0 | 51,3 | 57.9 | 62.6 | | E4 2177 | Crockett | Max | 91 | 66 | 90 | 87 | 77 | 90 | 62 | 77 | 73 | 73 | 98 | 88 | | | | M. | 65 | 52 | 50 | 47 | 37 | 30 | 24 | 42 | 34 | 38 | 42 | 48 | | | | Avg Max | 81.9 | 84.4 | 79.3 | 70.9 | 8.99 | 54.5 | 51.5 | 9.49 | 62.7 | 62.4 | 6.69 | 76.8 | | | | Avg Min | 53,1 | 56.5 | 53.9 | 52.6 | 47.5 | 42.6 | 34.9 | 49.2 | 43.5 | 45.8 | 51.5 | 53.2 | | | | Avg | 67.5 | 70°5 | 9.99 | 61.8 | 57.2 | 48.6 | 43.2 | 56.9 | 53.1 | 54.1 | 60.7 | 65.0 | | DO 2290 | Davenport | Max | 62 | 88 | 70 | 92 | 72 | 67 | 73 | 73 | 62 | 99 | 65 | 99 | | | | Min | 97 | 47 | 45 | 45 | 41 | 38 | 34 | 43 | 39 | 41 | 43 | 43 | | | | Avg Max | 59,3 | 65.2 | 61.8 | 63.4 | 62.6 | 58.0 | 55.8 | 61.7 | 57.5 | 57.8 | 59.0 | 61.0 | | | | Avg Min | 48.9 | 51.6 | 49.3 | 50.7 | 50.0 | 45.7 | 42.6 | 49.8 | 44.3 | 45.7 | 0.65 | 49.4 | | | | Avg | 54.1 | 58.4 | 55.6 | 57.0 | 56,3 | 51.8 | 49.2 | 55.8 | 50.9 | 51.7 | 54.0 | 55.2 | | E3 2580 | Duttons Landing | Max | 83 | 96 | 92 | 87 | 79 | 99 | 61 | 72 | 70 | 70 | 88 | 84 | | | | Min | 48 | 51 | 47 | 43 | 36 | 26 | 24 | 40 | 33 | 34 | 39 | 47 | | | | Avg Max | 74.5 | 78.3 | 74.3 | 71.9 | 67.5 | 59.9 | 53,8 | 65.0 | 63.3 | 62.4 | 4.69 | 74.2 | | | | Avg Min | 52.5 | 55.6 | 51.7 | 50.8 | 42.8 | 42.1 | 33.2 | 47.2 | 41.1 | 42.2 | 49.0 | 51.0 | | | | Avg | 63.5 | 67.0 | 63.0 | 61.4 | 55.2 | 51.0 | 43.5 | 56.1 | 52,2 | 52,3 | 59.2 | 62.6 | | E3 2934 | Fairfield Police Station | Max | 100 | 102 | 98 | 94 | 78 | 65 | 49 | 9/ | 74 | 74 | 91 | 97 | | | | Z. | 50 | 43 | 49 | 44 | 31 | 23 | 24 | 34 | 33 | 34 | 39 | 45 | | | | Avg Max | 86.9 | 88.8 | 84.6 | 74.8 | 6.79 | 54.4 | 54.6 | 67.4 | 0.49 | 64.3 | 73.5 | 82.0 | | | | Avg Min | 53.8 | 55.5 | 53.0 | 51.5 | 43.7 | 38.5 | 32.5 | 46.3 | 41.7 | 43.7 | 50.1 | 52.5 | | | | Avg | 70.4 | 72.2 | 68.8 | 63.2 | 55.8 | 46.5 | 43.6 | 56.9 | 52.9 | 54.0 | 61.8 | 67.3 | Ì | | |------------|-------------------------|---------|----------|------|------|------|------|------|------|------|------|------|------|------| | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB. | MAR | APR | MAY | NOC | | F8 3161 | Fort Bragg | Mox | 72 | 71 | 76 | 73 | 29 | 89 | 65 | 70 | 89 | 99 | 69 | 89 | | | | Min | 777 | 43 | 777 | 41 | 32 | 32 | 29 | 39 | 33 | 35 | 41 | 43 | | | | Avg Max | Max 62.6 | 65.2 | 64.2 | 65.6 | 9°09 | 56.9 | 56.1 | 61.7 | 58.4 | 59°9 | 63,5 | 63,1 | | | | Avg Min | 47.9 | 50.8 | 6.64 | 48.0 | 44.5 | 42.3 | 37.5 | 48.0 | 41.4 | 43.4 | 47.9 | 47.8 | | | | Avg | 55.3 | 58.0 | 57.1 | 55,5 | 52.6 | 9.64 | 8.94 | 54.9 | 6.65 | 51.7 | 55.7 | 55.5 | | F8 3164 | Fort Bragg Aviation | Max | 67 | 69 | 70 | 69 | 65 | 99 | 09 | 70 | 65 | 79 | 29 | 67 | | | | Min | 40 | 40 | 41 | 38 | 33 | 28 | 24 | 37 | 31 | 33 | 38 | 39 | | | | Avg Max | 60.5 | 62.5 | 61.7 | 61,3 | 59.8 | 56.2 | 55.3 | 60.7 | 57.9 | 58,3 | 60,3 | 61.6 | | | | Avg Min | 45.9 | 0.65 | 47.7 | 6.94 | 43.3 | 41.6 | 36.2 | 46.5 | 40.6 | 42.6 | 46.5 | 45.7 | | | | Avg | 53.2 | 55.8 | 54.7 | 54.1 | 51,6 | 48.9 | 45.8 | 53.6 | 49.3 | 50.5 | 53.4 | 53:7 | | F8 3191 | Fort Ross | Max | 29 | 70 | 71 | 92 | 72 | 61 | 62 | 70 | 61 | 99 | 65 | 69 | | | | Min | 42 | 42 | 43 | 43 | 38 | 36 | 30 | 41 | 34 | 37 | 41 | 43 | | | | Avg Max | 61.5 | 64.5 | 64.1 | 62,7 | 61.0 | 55,5 | 54.7 | 8.09 | 57.0 | 58.0 | 61,0 | 62.6 | | | | Avg Min | 6.94 | 49.2 | 6.94 | 49.2 | 9.94 | 44.3 | 0°05 | 47.9 | 45.4 | 43.8 | 47.2 | 47.4 | | | | Avg | 54.2 | 56.9 | 55.5 | 56.0 | 53.8 | 49.9 | 47.4 | 54.4 | 49.7 | 50.9 | 54.1 | 55.0 | | D1 3238-01 | Fremont Peak State Park | Max | 76 | 96 | 94 | 92 | 90 | 80 | 74 | 77 | 73 | 72 | 98 | 92 | | | |
Min | . 44 | 52 | 97 | 40 | 30 | 28 | 20 | 40 | 30 | 29 | 34 | 41 | | | | Avg Max | 85.2 | 82.1 | 81,1 | 69.3 | 9.99 | 61.2 | 55.7 | 62.7 | 54.9 | 53.2 | 62.9 | 72.7 | | | | Avg Min | 66.5 | 33.9 | 61,7 | 52.0 | 47.2 | 45.3 | 38.1 | 47.6 | 39.7 | 9.04 | 50.0 | 53.9 | | | | Avg | 75.9 | 58.0 | 71.4 | 60.7 | 56.9 | 53,3 | 6.94 | 55.2 | 47.3 | 6.94 | 58,0 | 63,3 | | D1 3417 | Gilroy | Max | 98 | 102 | 101 | 96 | 86 | 75 | 69 | 78 | 78 | 92 | 89 | 94 | | | | Z. | 94 | 48 | 45 | 41 | 32 | 25 | 18 | 36 | 31 | 33 | 38 | 43 | | | | Avg Max | 84.8 | 88.2 | 82.5 | 75.9 | 69.3 | 61.7 | 57.6 | 68.0 | 6.49 | 64.5 | 72.7 | 80.3 | | | | Avg Min | 49.7 | 52.2 | 6.65 | 47.8 | 42.2 | 36.8 | 29.8 | 45,7 | 37.9 | 45.4 | 48.1 | 49.8 | | | | Avg | 67.3 | 70.2 | 66.2 | 61.9 | 55.8 | 8 67 | 43.7 | 56.9 | 51.4 | 53 5 | 7 09 | 65 1 | | | | | | | 7 | | | | | | | 1 | | | | 3577 Graton 3578 Graton 1 W 3578 Half Moon Bay 2 | NAME | | = | 4110 | Cuo | FOC | 1012 | 1 | 144 | 011 | OVE | 000 | 2000 | 10.00 | |--|------|---------|----------|------|------|------|----------------|------|------|-------|------|--------|------|-------| | Graton 1 W Graton 1 W Half Moon Bay 2 | | | 200 | AUG | חחט | 50 | A
S
R | DEC | JAN | _ | MAR | A
K | MAY | NO S | | 3578 Graton 1 W 3714 Half Moon Bay 2 | | Max | 93 | 98 | 96 | 06 | 79 | 99 | 62 | 72 | 69 | 71. | 85 | 98 | | 3578 Graton 1 W 3714 Half Moon Bay 2 | | M. | 44 | 43 | 777 | 40 | 32 | 25 | 24 | 36 | 32 | 33 | 38 | 43 | | 3578 Graton 1 W 3714 Half Moon Bay 2 | | Avg Max | Max 79.1 | 84.0 | 79.1 | 71.5 | 67.2 | 53.9 | 52.8 | 63.1 | 60,3 | 60,1 | 68,1 | 74.9 | | 3578 Graton 1 W 3714 Half Moon Bay 2 | | Avg Min | 49.8 | 52.1 | 50.2 | 50.6 | 45.0 | 41.4 | 34.7 | 46.5 | 39.7 | 42.2 | 48.1 | 48.6 | | 3578 Graton 1 W 3714 Half Moon Bay 2 | | Avg | 64.4 | 68.0 | 9.49 | 61.0 | 56.1 | 47.6 | 43.8 | 54.8 | 50.0 | 51.2 | 58.1 | 61.8 | | 3714 Half Moon Bay 2 | | Max | 95 | 86 | 94 | 85 | 9/ | 61 | 61 | 74 | 7.1 | 71 | 88 | 87 | | 3714 Half Moon Bay 2 | | M.i. | 40 | 42 | 07 | 39 | 29 | 23 | 21 | 34 | 30 | 31 | 36 | 43 | | 3714 Half Moon Bay 2 | | Avg Mox | 80.9 | 83.7 | 77.1 | 69.2 | 64.2 | 53.7 | 52,4 | 64.1 | 60.7 | 61.4 | 7°69 | 76.5 | | 3714 Half Moon Bay 2 | | Avg Min | 46.2 | 49.1 | 4.94 | 47.7 | 42.2 | 39.5 | 32,1 | 45.8 | 38.2 | 41.0 | 47.7 | 47.8 | | 3714 Half Moon Bay 2 | | Avg | 63.6 | 66.4 | 61.8 | 58,5 | 53.2 | 9.94 | 42.3 | 55.0 | 49.5 | 51.2 | 58.6 | 62.2 | | | NNW | Max | 64 | 86 | 69 | 7.5 | 81 | 69 | 99 | 89 | 63 | 64 | 69 | 99 | | | | Min | 43 | 47 | 48 | 45 | 35 | 33 | 32 | 40 | 36 | 39 | 40 | 42 | | | | Avg Max | 61.2 | 64.8 | 63.2 | 8.49 | 62.8 | 57.7 | 56,2 | 61.1 | 57.5 | 58,3 | 59.7 | 61,7 | | | | Avg Min | 49.8 | 52.4 | 51.2 | 49.1 | 45.5 | 4.44 | 39°9 | 48.0 | 42.5 | 45.9 | 49.3 | 48.7 | | | | Avg | 55,5 | 58°6 | 57.2 | 57.0 | 54.2 | 51.1 | 48.1 | 54.6 | 50.0 | 52,1 | 54°2 | 55,2 | | 12 3734 Hamilton Air Force Base | | Max | 90 | 95 | 88 | 82 | 74 | 62 | 61 | 71 | 89 | 70 | 82 | 83 | | | | Min | 45 | 45 | 45 | 41 | 36 | 26 | 23 | 39 | 31 | 35 | 40 | 94 | | | | Avg Max | 74.0 | 79.5 | 73.0 | 68.7 | 63.8 | 53.3 | 51.5 | 0°.59 | 61.5 | 59.8 | 67.8 | 73.5 | | | | Avg Min | 48.8 | 52.1 | 49.2 | 50.1 | 45.3 | 41.0 | 33.2 | 6.74 | 45.4 | 9.44 | 50°4 | 50,9 | | | | Avg | 61.4 | 65.8 | 61.1 | 59,4 | 54.6 | 47.2 | 45.4 | 56.0 | 52.0 | 52,2 | 59.1 | 62.2 | | F9 3875 Healdsburg | | Mox | 101 | 105 | 101 | 95 | 83 | 62 | 69 | 78 | 9/ | 9/ | 93 | 97 | | | | Min | 94 | 45 | 44 | 42 | 37 | 26 | 23 | 38 | 32 | 34 | 39 | 44 | | | | Avg Max | 87.6 | 89.9 | 85.0 | 74.5 | 68°8 | 56.9 | 56.9 | 67.8 | 4°49 | 0°49 | 73.7 | 82.6 | | | | Avg Min | 50,2 | 52.9 | 50.0 | 48.8 | 6.44 | 40°4 | 33.7 | 48.4 | 41.0 | 43.0 | 49.2 | 51.9 | | | | Avg | 68.9 | 71.4 | 67.5 | 61.7 | 61.7 56.9 48.7 | 48.7 | 45.3 | 58.1 | 52.7 | 53.5 | 61.5 | 67,3 | TABLE A-3 | NUMBER | STATION NAME | | JUL | AUG | SEP | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | NOC | |---------|--|---------|------|------|------|------|------|------|------|------|------|------|-------|------| | D1 4022 | Hollister | Mox | 89 | 102 | 95 | 92 | 89 | 77 | 69 | 78 | 78 | 92 | 87 | 98 | | | | Min | 42 | 77 | 70 | 34 | 26 | 20 | 16 | 35 | 30 | 32 | 37 | 42 | | | | Avg Max | 77.6 | 83,3 | 78.0 | 76,1 | 69.7 | 64.3 | 59,8 | 68,3 | 64.5 | 0.49 | 68.8 | 73.8 | | | | Avg Min | 45.9 | 48.1 | 45.6 | 43.2 | 37.6 | 33.8 | 29.3 | 6.94 | 38.4 | 42.1 | 47.9 | 48.1 | | | | Avg | 61,8 | 65.7 | 61.8 | 59.7 | 53.7 | 49,1 | 44°6 | 57.6 | 51.5 | 53,1 | 58.4 | 61.0 | | E2 4500 | Kentfield | Max | 89 | 98 | 98 | 89 | 80 | 99 | 65 | 72 | 72 | 72 | 87 | 88 | | | | M.i. | 45 | 40 | 45 | 43 | 38 | 27 | 25 | 39 | 33 | 35 | 70 | 45 | | | 7 | Avg Max | 79.4 | 82.0 | 7.77 | 71.1 | 67.0 | 58.0 | 54.4 | 65.0 | 61,9 | 62.2 | 9.89 | 75.6 | | | | Avg Min | 48.5 | 50.9 | 0.65 | 9.67 | 45.8 | 40°7 | 34.0 | 47.5 | 41.4 | 44.3 | 40.64 | 49.8 | | | | Avg | 0°49 | 66.5 | 63.4 | 60.4 | 56.4 | 49.4 | 44.2 | 56.3 | 51,7 | 53.3 | 59.0 | 62.7 | | D2 4555 | King City | Mox | 88 | 102 | 94 | 96 | 89 | 79 | 75 | 78 | 78 | 79 | 88 | 92 | | | | Min | 41 | 45 | 42 | 38 | 27 | 23 | 18 | 34 | 30 | 32 | 37 | 39 | | | | Avg Max | 81.0 | 85.7 | 80.3 | 79.2 | 72.3 | 67.4 | 61.6 | 70.9 | 67.8 | 67.5 | 74.7 | 80,1 | | | | Avg Min | 6.64 | 51,0 | 49°5 | 46.3 | 38.6 | 36,7 | 30.9 | 45.6 | 37.8 | 41.7 | 47.5 | 48.7 | | | | Avg | 65.5 | 68.4 | 6.49 | 62.8 | 55.5 | 52°1 | 46.3 | 58°3 | 52.8 | 54.6 | 61,1 | 64.4 | | E6 4922 | Lexington Reservoir | Max | 95 | 98 | 91 | 16 | 80 | 65 | 65 | 73 | 72 | 78 | 88 | 89 | | | | M. | 43 | 45 | 42 | 37 | 32 | 26 | 22 | 35 | 31 | 32 | 38 | 41 | | | The state of s | Avg Max | 85.1 | 85.9 | 81.5 | 70.5 | 64.9 | 58.1 | 54.7 | 64.7 | 61.2 | 61.7 | 4.69 | 78.5 | | | | Avg Min | 48.5 | 50.0 | 6.24 | 45.4 | 43.5 | 39.6 | 33.8 | 45.9 | 38.5 | 41.4 | 47.8 | 48.0 | | | | Avg | 8.99 | 68.0 | 64.7 | 0.09 | 54.2 | 48.8 | 44.2 | 55,3 | 49.8 | 51.6 | 58.6 | 63.2 | | D3 4963 | Linn Ranch | Max | 101 | 103 | 96 | 98 | 82 | 71 | 79 | D | Д | 75 | 90 | 98 | | | | M. | 45 | 45 | 43 | 07 | 26 | 22 | 17 | D | Д | 32 | 37 | 44 | | | | Avg Max | 92.8 | 91,5 | 86.2 | 75.2 | 6.99 | 61,2 | 55.8 | Q | Ω | 63°4 | 72.5 | 81,6 | | | | Avg Min | 50,3 | 54.2 | 50.4 | 47.8 | 39°5 | 35.8 | 30.8 | D | D | 39.2 | 48.0 | 6.64 | | | | Avg | 71.6 | 72.8 | 68.3 | 61.5 | 53.2 | 48.5 | 43,3 | D | D | 51.3 | 60.2 | 65.8 | | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | |---------|-----------------------------|-------------|------|------|-------|------|------|------|------|------|------|------|------|------| | E5 4996 | Livermore Sewage Plant | Max | 66 | 100 | 97 | 86 | 78 | 67 | 65 | 74 | 72 | 72 | 88 | 97 | | | | Min | 44 | 45 | 41 | 38 | 30 | 20 | 19 | 33 | 29 | 24 | 35 | 43 | | | | Avg Max | 85.5 | 85.6 | 82.2 | 72.7 | 0.79 | 58,3 | 54.4 | 9.99 | 62.8 | 62.3 | 71.0 | 80.7 | | | | Avg Min | 49.4 | 50.7 | 47.9 | 46.5 | 38.8 | 35.8 | 28.3 | 44.1 | 37,1 | 39.1 | 45.8 | 6.94 | | | | Avg | 67.4 | 68.2 | 65.0 | 59.6 | 52.9 | 47.0 | 41.4 | 55.4 | 50.0 | 50.7 | 58.4 | 63.8 | | E5 4997 | Livermore 2 SSW | Max | 101 | 103 | 98 | 95 | 78 | 68 | .65 | 75 | 71 | 72 | 91 | 100 | | | | Min | 45 | 47 | 45 | 41 | 30 | 22 | 21 | 33 | 30 | 31 | 37 | 42 | | | | Avg Max 89 | 89.3 | 88.0 | 83.9 | 72.6 | 7.99 | 58.7 | 54.4 | 65.3 | 61.8 | 61.1 | 71,2 | 81,4 | | | | Avg Min | 50°2 | 52.0 | 50.2 | 9.94 | 39.9 | 33.8 | 28.9 | 44.1 | 36.6 | 40.1 | 8.94 | 47.7 | | | | Avg | 6.69 | 70.0 | 67.1 | 59.6 | 53,3 | 46.3 | 41.7 | 54.7 | 49.2 | 50.6 | 59.0 | 9.49 | | E6 5123 | Los Gatos | Max | 91 | 26 | 90 | 87 | 78 | 67 | 63 | 7.5 | 73 | 70 | 87. | 89 | | | | Min | 48 | 48 | 45 | 41 | 33 | 29 | 25 | 38 | 34 | 30 | 41 | 45 | | | | Avg Max | 83.0 | 83.1 | 79.4 | 71.6 | 66.3 | 58.5 | 55.6 | 65.8 | 62.5 | 62.1 | 70.5 | 78.0 | | | | Avg Min | 50°6 | 52.3 | 49.7 | 4.24 | 43.6 | 38.7 | 32.4 | 45.7 | 37.7 | 39.2 | 47.8 | 49.2 | | | | Avg | 67.0 | 67.7 | 9°
79 | 59°2 | 55.0 | 48.6 | 44.0 | 55.8 | 50,1 | 50.7 | 59.2 | 63.6 | | E3 5333 | Mare Island Naval Ship Yard | Max | 85 | 95 | 89 | 85 | 71 | 65 | 69 | 71 | 70 | 79 | 92 | 88 | | | | Min | 54 | 55 | 54 | 51 | 40 | 31 | 33 | 47 | 39 | 40 | 94 | 54 | | | | Avg Max 78. | 78.2 | 82,3 | 75.9 | 71.7 | 66.5 | 54.1 | 51.9 | 64.8 | 62.7 | 0.99 | 74.3 | 78.8 | | | | Avg Min | 56,2 | 59,9 | 58.1 | 56,3 | 51.5 | 45.0 | 40.0 | 52.3 | 6.94 | 49.0 | 59°4 | 57.6 | | | | Avg | 67.2 | 71.1 | 67.0 | 0.49 | 59.0 | 9.64 | 46.0 | 58.6 | 54.8 | 57.5 | 8.99 | 68.2 | | E4 5377 | Martinez Fire Station | Max | 94 | 100 | 95 | 90 | 80 | 64 | 61 | 72 | 73 | 74 | 89 | 93 | | | | Min | 65 | 64 | 64 | 44 | 36 | 28 | 26 | 39 | 33 | 36 | 41 | 48 | | | | Avg Max | 84.8 | 85.7 | 80,2 | 71.4 | 0.99 | 53.5 | 50.8 | 64.2 | 62.7 | 62.7 | 71.9 | 80.0 | | | | Avg Min | 53.4 | 55.4 | 52.2 | 50.7 | 45.0 | 40°5 | 32.4 | 6.94 | 41.8 | 44.4 | 50.2 | 52.9 | | | | Avg | 69,1 | 70.6 | 66.2 | 61,1 | 55.5 | 47.0 | 41.6 | 55.6 | 52,3 | 53,6 | 61.1 | 66.5 | | | | | | | | | | | | | | | | | | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | NUC | |---------|-----------------------|--------------|----------|------|------|------|------|------|----------------|------|------|------|------|------| | D4 5795 | Monterey | Max | 75 | 95 | 85 | 87 | 90 | 80 | 92 | 72 | 7.0 | NR | NR | NR | | | | Min | 47 | 64 | 47 | 94 | 41 | 32 | 28 | 42 | 37 | NR | NR | NR | | | | Avg Max | Max 64.5 | 71,5 | 0.79 | 71.4 | 6.29 | 63.9 | 9.09 | 66.2 | 62,6 | NR | NR | NR | | | | Avg Min | 9.64 | 51.9 | 50.0 | 50.6 | 47.0 | 43.8 | 40°5 | 48.9 | 42.9 | NR | NR | NR | | | | Avg | 57,1 | 61,7 | 58,5 | 61.0 | 57.5 | 53.9 | 50.6 | 57.6 | 52.8 | NR | NR | NR | | E4 5915 | Mt. Diablo North Gate | Мах | 96 | 100 | 95 | 90 | 81 | 72 | 89 | 72 | 71 | 70 | 98 | 96 | | | | Min | 43 | 42 | 41 | 41 | 36 | 29 | 24 | 41 | 29 | 30 | 37 | 43 | | | | Avg Mox | 88,7 | 86.2 | 83.6 | 6.69 | 65,3 | 59.7 | 53.8 | 61.9 | 57,8 | 55.7 | 6.99 | 78.5 | | | | Avg Min | 62.4 | 57.7 | 53.0 | 49.8 | 46.5 | 44.0 | 37.2 | 47,1 | 38.7 | 38.3 | 45.0 | 50.2 | | | | Avg | 75.6 | 72.0 | 68,3 | 59.9 | 55.9 | 51,9 | 45.5 | 54,5 | 48,3 | 47.0 | 56.0 | 64.4 | | E5 5933 | Mt. Hamilton | Max | D | 89 | 84 | 80 | 79 | 70 | 62 | 65 | 62 | 62 | 78 | 87 | | | | Min | Q | 44 | 44 | 35 | 28 | 24 | 18 | 35 | 25 | 24 | 32 | 37 | | | | Avg Max | D | 77.7 | 75.3 | 65.0 | 57,1 | 54.7 | 49.5 | 55.6 | 9*97 | 45.4 | 61,1 | 68.9 | | | | Avg Min | D | 60°5 | 58.2 | 51.0 | 43.2 | 43.2 | 36,5 | 45.9 | 33.0 | 33,4 | 45,3 | 50.2 | | | | Avg | Q | 69,1 | 8,99 | 58.0 | 50,2 | 49.0 | 43.0 | 49,3 | 39.8 | 39.4 | 53.2 | 59.6 | | E3 6068 | Napa - Haven | Mox | 96 | 104 | 98 | 90 | 82 | 49 | 7 9 | 72 | 72 | 73 | 89 | 90 | | | | Min | 94 | 94 | 41 | 09 | 30 | 22 | 20 | 36 | 30 | 30 | 36 | 42 | | | | Avg Max | 81 | 84.5 | 79,1 | 73.2 | 67.7 | 57.8 | 54.3 | 65.2 | 63.2 | 63.2 | 70,2 | 79.0 | | | | Avg Min | 49,3 | 51,0 | 49.0 | 48,3 | 45,4 | 37.9 | 30°2 | 44.7 | 37.5 | 40.4 | 6.94 | 48.1 | | | | Avg | 65,2 | 67.8 | 0.49 | 8.09 | 55.0 | 47.8 | 45.4 | 55.0 | 50.4 | 51.8 | 58.6 | 63.6 | | E3 6074 | Napa State Hospital | Max | 91 | 66 | 97 | 92 | 84 | 65 | 64 | 75 | 74 | 74 | 89 | 89 | | | | Min | 48 | 95 | 45 | 40 | 34 | 25 | 20 | 38 | 25 | 30 | 37 | 42 | | | | Avg Max 78.5 | 78.5 | 83,1 | 78.5 | 74.1 | 67.8 | 58.4 | 55.2 | 6.99 | 64,2 | 64.1 | 71,4 | 78.4 | | | | Avg Min | 50,7 | 51,2 | 50,5 | 50,3 | 43,7 | 40,1 | 32,0 | 9.94 | 38.0 | 38°6 | 47.9 | 49,2 | | | | Avg | 9* 49 | 67,2 | 64,5 | 62,2 | 55,8 | 49,3 | 43.6 | 56.8 | 51,1 | 51,4 | 59.7 | 63.8 | | NUMBER | STATION NAME | | JUL | AUG | SEP | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | |---------|-------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------| | E5 6144 | Newark | Мох | 82 | 95 | 89 | 98 | 83 | 69 | 63 | 74 | 69 | 69 | 84 | 85 | | | | Min | 65 | 52 | 48 | 44 | 33 | 28 | 24 | 40 | 37 | 37 | 43 | 94 | | | | Avg Max | 74.5 | 77.9 | 73.6 | 70.9 | 66,2 | 56,7 | 53,6 | 4,49 | 62,0 | 61,4 | 67,3 | 73.1 | | | | Avg Min | 52,3 | 54.8 | 53.8 | 52.6 | 46.1 | 41.8 | 35,1 | 49.0 | 42.6 | 46.5 | 51.6 | 52.3 | | | | Avg | 63.4 | 66.4 | 63.7 | 61.8 | 56.2 | 49.3 | 44.4 | 56.7 | 52,3 | 54.0 | 59.5 | 62.7 | | E4 6335 | Oakland WB AP | Max | 79 | 95 | 88 | 84 | 77 | 63 | 63 | 72 | 68 | 29 | 98 | 80 | | | | M. | 50 | 53 | 50 | 48 | 37 | 32 | 30 | 42 | 37 | 38 | 45 | 64 | | | | Avg Max | 69.5 | 74.1 | 6.69 | 68.2 | 6.49 | 56.0 | 54.3 | 7.49 | 8.09 | 6.09 | 65.7 | 6.69 | | | | Avg Min | 53.8 | 56,3 | 54.9 | 53.1 | 47.1 | 43.0 | 37.9 | 49.8 | 44.2 | 47.3 | 52.7 | 53,4 | | | | Avg | 61.7 | 65.2 | 62.4 | 60.7 | 56.0 | 49.5 | 46.1 | 57.1 | 52.5 | 54.1 | 59.2 | 61.7 | | E3 6646 | Palo Alto City Hall | Max | 81 | 96 | 87 | 83 | 62 | 99 | 63 | 74 | 70 | | 87 | 84 | | | | Min | 47 | 49 | 94 | 41 | 30 | 26 | 21 | 37 | 32 | 34 | 40 | 44 | | | | Avg Max | 73.8 | 78.8 | 73.2 | 70.1 | 9°49 | 56.0 | 53.4 | 8.49 | 62.6 | 62.5 | 0.69 | 75.5 | | | | Avg Min | 53,8 | 53.5 | 51,3 | 48.5 | 42.5 | 40.7 | 33,4 | 47.4 | 40.7 | 45.6 | 50.5 | 52.1 | | | | Avg | 63.8 | 66.2 | 62,3 | 59.3 | 53.6 | 48.4 | 43.4 | 56.1 | 51.7 | 54.1 | 59.8 | 63.8 | | E2 6826 | Petaluma F.S. No. 2 | Max | 90 | 100 | 98 | 95 | 78 | 99 | 29 | 72 | 71 | 74 | 98 | 89 | | | | Min | 43 | 41 | 42 | 42 | 34 | 24 | 20 | 35 | 29 | 32 | 37 | 45 | | | | Avg Max | 82.1 | 84.4 | 82.0 | 73.3 | 68,4 | 57.5 | 55.9 | 65.4 | 63.2 | 62.6 | 0.69 | 76.4 | | | | Avg Min | 49.0 | 51.4 | 49.2 | 49.4 | 43.5 | 39.8 | 31,4 | 9.94 | 38,3 | 41.7 | 47.7 | 49.3 | | | | Avg | 65.6 | 62.9 | 65.6 | 61,4 | 56.0 | 48.7 | 43.7 | 56.0 | 50.8 | 52.2 | 58.4 | 65.9 | | D2 6926 | Pinnacles National Mon. | Max | 103 | 105 | 66 | 96 | 92 | 81 | 74 | 79 | 78 | 78 | 95 | 101 | | | | M. | 40 | 43 | 40 | 35 | 28 | 19 | 15 | 33 | 27 | 28 | 33 | 34 | | | | Avg Max | 96.4 | 95.9 | 91,7 | 82.1 | 73.0 | 67.8 | 62.6 | 69°5 | 4.49 | 64.2 | 76.5 | 85.2 | | | | Avg Min | 47.8 | 50.0 | 46.7 | 43.8 | 39.0 | 35.0 | 28.1 | 41.8 | 34.4 | 37.5 | 44.3 | 44.5 | | | | Avg | 72,1 | 73,0 | 69.2 | 63.0 | 56.0 | 51.4 | 45.4 | 55.7 | 49.4 | 50.9 | 60,4 | 6,49 | | | 1 | | | | | | | | | | | | | | |------------|---|---------|------|------|-------|------|------|------|------|------|------|------|------|------| | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | | E5 6991-05 | Pleasanton Nursery | Max | 104 | 102 | 86 | 92 | 82 | 89 | 99 | 77 | 74 | 17.6 | 90 | 100 | | | | Min | 917 | 1717 | 43 | 38 | 28 | 21 | 19 | 33 | 28 | 32 | 36 | 42 | | | | Avg Max | 90°3 | 89,1 | 84.2 | 72,1 | 8.99 | 58,5 | 55,5 | 8.99 | 62.7 | 61,8 | 71.6 | 82,3 | | | | Avg Min | 50.7 | 52.0 | 48.6 | 46.5 | 38.7 | 37.4 | 28.7 | 45.6 | 38.1 | 41.8 | 48,3 | 49.0 | | | | Avg | 70.5 | 9.07 | 47°99 | 59,3 | 52.8 | 48.0 | 42.1 | 56.2 | 50.4 | 51.8 | 0.09 | 65,6 | | F8 7009 | Poinc Arena | Мах | 89 | 72 | 7.5 | 74 | 69 | 63 | 65 | 99 | 62 | 65 | 99 | 67 | | | Charles and the second | Min | 4747 | 43 | 14 | 38 | 38 | 30 | 28 | 37 | 31 | 33 | 38 | 42 | | | | Avg Mox | 62.8 | 65.1 | 63.6 | 65.9 | 4.09 | 55.9 | 55.4 | 60,2 | 57.4 | 58,3 | 61.7 | 62.4 | | | | Avg Min | 47.8 | 50.4 | 48.5 | 47.1 | 43.4 | 41.8 | 36,3 | 47.3 | 41.0 | 42.5 | 46.8 | 47.0 | | | | Avg | 55,3 | 57.8 | 56,1 | 55.0 | 51.9 | 48.9 | 45.9 | 53.8 | 49.2 | 50,4 | 54.3 | 54.7 | | D5 7024 | Point Piedras Blancas | Max | 89 | 71 | 89 | 73 | 97 | | 73 | 7.0 | 89 | 65 | 65 | 70 | | | | Min | 949 | 847 | 64 | 47 | 040 | | 38 | 4.5 | 39 | 38 | 44 | 43 | | | | AVQ MOX | 63.6 | 66.5 | 62,8 | 65,1 | 62.8 | 60,1 | 0°09 | 63.0 | 8.09 | 60°5 | 61.8 | 64.5 | | | | Avg Min | 51,1 | 51.6 | 51.4 | 51.6 | 0.64 | 48,1 | 46.0 | 50.5 | 45,2 | 46.3 | 48.7 | 49.5 | | | | Avg | 57.4 | 59.1 | 57.1 | 58.4 | 55.9 | 54.1 | 53.0 | 56.8 | 53.0 | 53,4 | 55,3 | 57.0 | | E4 7070 | Port Chicago NAD | Max | 974 | 101 | 91 | 83 | 9/ | 179 | 62 | 72 | 74 | 73 | 89 | 97 | | | |
Min | 44 | 48 | 40 | 38 | 30 | 23 | 21 | 31 | 30 | 31 | 37 | 4.5 | | | | Avg Max | 82.7 | 87.6 | 77.4 | 69.2 | 65.0 | 9,45 | 52.6 | 65.4 | 62.9 | 63,3 | 71,7 | 80.1 | | | | Avg Min | 50.0 | 53,3 | 47.7 | 46.3 | 40.2 | 38.5 | 29.5 | 43.5 | 36,8 | 40.8 | 47.9 | 50.6 | | | | Avg | 4.99 | 70.5 | 62.6 | 57.8 | 52.6 | 9.94 | 41.1 | 54.5 | 6.64 | 52,1 | 59.8 | 65.4 | | F9 7109 | Potter Valley P.H. | Max | 105 | 101 | 100 | 91 | 85 | 73 | 69 | 75 | 73 | 75 | 92 | NR | | | | Min | 42 | 42 | 41 | 36 | 24 | 18 | 17 | 28 | 24 | 29 | 34 | NR | | | | Avg Max | M | 93,3 | 91.5 | 75.4 | 66.2 | M | 61.6 | 4.99 | 9.19 | 59.2 | 75.8 | NR | | | | Avg Min | Σ | 49.8 | 46.2 | 42.7 | 37.0 | 34.6 | 25.4 | 42.5 | 34.6 | 39.4 | 44.7 | NR | | | | Avg | M | 71,6 | 68,89 | 59,1 | 51,6 | M | 43,5 | 54.5 | 48,1 | 49.3 | 60,3 | NR | | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | NOU | |------------|---------------------|---------|----------|------|------|------|------|------|------|-------|------|------|------|------| | D2 7150 | Priest Valley | Max | 100 | 105 | 86 | 76 | 82 | 78 | 99 | 75 | 72 | 72 | 91 | 98 | | | | Min | 40 | 39 | 35 | 31 | 16 | 1.7 | 6 | 26 | 21 | 25 | 30 | 33 | | | | Avg Mox | 94.1 | 93.5 | 88.9 | 76.4 | 4.99 | 62.1 | 57.0 | 65.2 | 59.9 | 59.9 | 72.0 | 82.1 | | | | Avg Min | 47.4 | 47.2 | 43.1 | 38.3 | 29.5 | 29.3 | 21.5 | 37.4 | 30.1 | 34.0 | 41.5 | 42.9 | | | | Avg | 70.8 | 70.4 | 0.99 | 57.4 | 48.0 | 45.7 | 39.3 | 51.3 | 45.0 | 47.0 | 56.8 | 62.5 | | 01 7190 | Quien Sabe Hay Camp | Max | 97 | 97 | 95 | 91 | 89 | 75 | 71 | 80 | 7.1 | 74 | 89 | 92 | | | | Min | 42 | 40 | 38 | 32 | 27 | 20 | 10 | 27 | 19 | 26 | 28 | 30 | | | | Avg Mox | Max 88.6 | 86.0 | 81.3 | 74.9 | 65.0 | 62,7 | 57.8 | 62.9 | 59.2 | 0.09 | 67.4 | 73.5 | | | | Avg Min | 47.5 | 47.0 | 44.8 | 41.0 | 36.9 | 33.1 | 25.0 | 39.8 | 31.7 | 37.3 | 42.7 | 43.0 | | | | Avg | 68.0 | 66.5 | 63.0 | 58.0 | 51.0 | 48.0 | 44.4 | 52.8 | 45.4 | 48.6 | 55.0 | 58.2 | | E7 7339 | Redwood City | Max | 89 | 98 | 92 | 85 | 82 | 29 | 67 | 74 | 72 | 74 | 90 | 91 | | | | Min | 94 | 48 | 94 | 43 | 34 | 27 | 24 | 38 | 34 | 36 | 41 | 949 | | | | Avg Max | 80°7 | 84.5 | 79.2 | 72.2 | 67.8 | 58.9 | 56.1 | 67.1 | 65.2 | 65.6 | 73.2 | 79.6 | | | | Avg Min | 52.8 | 52.1 | 50.9 | 49.3 | 4.44 | 41.3 | 35.2 | 4.7.4 | 41.3 | 44.7 | 50,1 | 51.2 | | | | Avg | 8.99 | 68,3 | 65.1 | 60.8 | 56.1 | 50,1 | 45.7 | 57.3 | 53,3 | 55.2 | 61.7 | 65.4 | | 04 7539-01 | Roosevelt Ranch | Max | 78 | 95 | 98 | 88 | 84 | 9/ | 72 | 75 | 72 | 70 | 92 | 81 | | | | Min | 64 | 50 | 51 | 50 | 44 | 44 | 42 | 47 | 41 | 41 | 48 | 64 | | | | Avg Max | 66.1 | 9.92 | 71.2 | 71.4 | 66.3 | 60.4 | 60.4 | 63.7 | 60,2 | 61,1 | 63.9 | 67,1 | | | | Avg Min | 52.8 | 60.2 | 56.4 | 54.1 | 54.7 | 50.0 | 47.5 | 51.8 | 47.2 | 48.2 | 53,3 | 53,3 | | | | Avg | 59.4 | 68.4 | 63.8 | 62.8 | 60.5 | 55.2 | 54.0 | 57.8 | 53.7 | 54.6 | 58.6 | 60.2 | | E4 7414 | Richmond | Max | 71 | 91 | 82 | 82 | 82 | 70 | 65 | 71 | 7.0 | 71 | 82 | 77 | | | | Min | 52 | 53 | 52 | 50 | 39 | 32 | 30 | 41 | 36 | 38 | 45 | 51 | | | | Avg Max | 65.3 | 8.69 | 67.8 | 69.5 | 66.5 | 59.4 | 55,3 | 65.5 | 62,4 | 61.4 | 66.3 | 68.3 | | | | Avg Min | 53.4 | 56.4 | 54.4 | 53,4 | 49.1 | 43.9 | 38.4 | 49.8 | 45.2 | 6.94 | 53.4 | 54.4 | | | | Avg | 59.4 | 63,1 | 61.1 | 61.5 | 57.8 | 51,7 | 6.94 | 57.7 | 53.8 | 54.2 | 59.9 | 61.4 | TABLE A-3 | | | | | | | | | | | | | 100 | | | |---------|----------------------|---------|------|------|------|------|------|------|------|------|------|------|-------|------| | NUMBER | STATION NAME | | JUL | AUG | SEP | 500 | SON | DEC | JAN | T R | MAK | APR | MAY | NOC | | E3 7646 | Saint Helena | Max | 101 | 106 | 101 | 94 | 98 | 67 | 70 | 75 | 75 | 77 | 92 | 96 | | | | Min | 94 | 42 | 42 | 38 | 31 | 22 | 21 | 35 | 28 | 31 | 35 | 45 | | | | Avg Max | 88.9 | 89.2 | 84.2 | 74.4 | 9.79 | 57,3 | 56.2 | 67.0 | 63,4 | 63,3 | 73.0 | 82,5 | | | | Avg Min | 49.2 | 51,1 | 48.4 | 48.5 | 41.4 | 37.9 | 30°7 | 44.8 | 37.1 | 9°04 | 48.7 | 50°4 | | | | Avg | 69.1 | 70.2 | 66.3 | 61.5 | 54.5 | 47.6 | 43.5 | 55.9 | 50,3 | 52.0 | 60.09 | 66.5 | | E4 7661 | Saint Mary's College | Max | 98 | 100 | 76 | 89 | 75 | 65 | 61 | 71 | 72 | 70 | 91 | 96 | | | | Min | 48 | 94 | 43 | 38 | 27 | 21 | 20 | 33 | 27 | 29 | 36 | 41 | | | | Avg Max | 82,2 | 83,5 | 78.3 | 70.8 | 4.49 | 54.2 | 52.0 | 0.49 | 60,3 | 60.5 | 9.89 | 76.6 | | | | Avg Min | 51.2 | 52,3 | 50.9 | 44.8 | 37.9 | 35.6 | 29.6 | 44.1 | 37.0 | 9.04 | 47.7 | 49.8 | | | | Avg | 66.7 | 6.79 | 9.49 | 57.8 | 51.2 | 44.9 | 40.8 | 54.1 | 48.7 | 50.6 | 58.2 | 63,2 | | D2 7668 | Salinas 2 E | Max | 74 | 95 | 88 | 89 | 92 | 81 | 74 | 81 | 75 | 72 | 76 | 75 | | | | Min | 64 | 95 | 94 | 41 | 32 | 29 | 22 | 36 | 29 | 36 | 39 | 43 | | | | Avg Max | 66.5 | 75.1 | 70.0 | 74.8 | 71.1 | 65°2 | 60.8 | 67.8 | 63.2 | 63.4 | 9.99 | 68.5 | | | | Avg Min | 51.6 | 52.5 | 51,1 | 49°4 | 42.3 | 40°8 | 35,1 | 46.4 | 39°6 | 0°44 | 49.7 | 51,2 | | | | Avg | 59,1 | 63,8 | 9,09 | 62,1 | 56,7 | 53,2 | 48.0 | 57,1 | 51,6 | 53,7 | 58,2 | 59,9 | | D2 7669 | Salinas FAA Airport | Max | 75 | 95 | 87 | 89 | 92 | 81 | 74 | 92 | 76 | 73 | 79 | 76 | | | | Min | 47 | 95 | 47 | 43 | 33 | 32 | 25 | 38 | 32 | 37 | 04 | 44 | | | | Avg Max | 67.5 | 74.6 | 69.2 | 73.6 | 68,3 | 63.2 | 60.2 | 67.0 | 63.6 | 64.2 | 68.0 | 70,1 | | | | Avg Min | 51.9 | 52,7 | 51.9 | 50.4 | 43.9 | 45.4 | 37.3 | 48.1 | 40.8 | 45,2 | 51,2 | 52,4 | | | | Avg | 59.7 | 63.7 | 9.09 | 62.0 | 56,1 | 52.8 | 48.8 | 57.6 | 52,2 | 54.7 | 59,6 | 61,3 | | D3 7714 | San Antonio Mission | Max | 105 | 107 | 102 | 97 | 88 | 79 | 7.0 | 79 | 77 | 77 | 92 | 102 | | | | Min | 40 | 38 | 38 | 32 | 20 | 19 | 12 | 30 | 27 | 28 | 30 | 36 | | | | Avg Max | 98.7 | 97.5 | 93.2 | 80.2 | 73.0 | 67.0 | 62.8 | 70°4 | 68.0 | 65.7 | 76.9 | 87.5 | | | | Avg Min | 46.0 | 46.1 | 45.4 | 39,5 | 33,1 | 31,2 | 25.0 | 39,3 | 32,5 | 36.7 | 0.44 | 43,4 | | | | Avg | 72,4 | 71,8 | 67.8 | 59.0 | 53,1 | 49,1 | 43.9 | 54.9 | 50,3 | 51,2 | 60,5 | 65,5 | | | | INICIA ILIE | <u>.</u> | | | | , | | | | | | | | |---------|----------------------------------|-------------|----------|-----------|-----------|------|------|------|------|------|------|------|------|------| | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB. | MAR | APR | MAY | NOC | | E8 7767 | San Francisco Richmond SunsetMox | Max | 70 | 73 | 69 | 74 | 83 | 99 | 89 | 72 | 99 | 72 | 77 | 89 | | | | Miñ | 47 | 50 | 50 | 45 | 35 | 32 | 30 | 42 | 37 | 39 | 43 | 4.5 | | | | Avg Max | 60.2 | 65.3 | 61.2 | 64.4 | 63.3 | 59°3 | 57.7 | 61.6 | 58,4 | 61,3 | 61,5 | 61,7 | | | | Avg Min | 50.9 | 54.4 | 53.1 | 50,3 | 48.4 | 45.3 | 39.9 | 6.64 | 42.7 | 47.6 | 50.8 | 50.9 | | | | Avg | 55.6 | 59.9 | 57.2 | 57.4 | 55.9 | 52,3 | 48.8 | 55.8 | 50.6 | 54.5 | 56.2 | 56,3 | | E7 7769 | San Francisco WB AP | Max | 78 | 92 | 86 | 80 | 62 | 64 | 99 | 20 | 89 | 29 | 78 | 92 | | | | Min | 64 | 51 | 48 | 47 | 37 | 31 | 29 | 41 | 38 | 39 | 43 | 94 | | | | Avg Max | 69.1 | 73.2 | 4.69 | 67.2 | 63.8 | 55.7 | 53°2 | 62.8 | 59.7 | 59.4 | 63.6 | 67.5 | | | | Avg Min | 51.2 | 53,9 | 52.5 | 52.0 | 47.6 | 43.5 | 37.6 | 48.9 | 44.0 | 46.5 | 50.0 | 49.7 | | | | Avg | 60.2 | 63.6 | 61.0 | 9°65 | 55.7 | 9.64 | 45.6 | 55.9 | 51.9 | 53.0 | 56.8 | 58.6 | | E7 7772 | San Francisco F.O.B. | Max | 67 | 98 | 77 | 79 | 81 | 65 | 99 | 72 | 89 | 29 | 77 | 71 | | | | Min | 64. | 50 | 50 | 52 | 94 | 41 | 41 | 47 | 41 | 42 | 64 | 64 | | | | Avg Max | 60,5 | 62.9 | 63.4 | 66.7 | 6.49 | 57.7 | 55.4 | 63.9 | 59.8 | 59.2 | 62.1 | 63.7 | | | | Avg Min | 51.4 | 54.0 | 53.2 | 54.8 | 52.7 | 48.0 | 45.4 | 52.8 | 48.4 | 49.5 | 52,3 | 52,4 | | | | Avg | 56.0 | 0.09 | 58,3 | 8.09 | 58.8 | 52.9 | 50.4 | 58.4 | 54.1 | 54.5 | 57.2 | 58,1 | | E8 7807 | San Gregorio 3 SE | Max | 72 | 06 | 85 | 82 | 86 | 75 | 70 | 75 | 65 | 67 | 73 | 75 | | | | Min | 38 | 41 | 41 | 38 | 28 | 27 | 23 | 35 | 30 | 33 | 38 | 38 | | | - | Avg Max | 62.9 | 71.2 | 9.99 | 68.3 | 65.4 | 61.1 | 57.9 | 9.49 | 59.8 | 59.4 | 61.6 | 9.49 | | | | Avg Min | 46.3 | 0.64 | 48.1 | 45.7 | 41.0 | 39°8 | 34.0 | 46.3 | 38.2 | 42.7 | 48.2 | 47.4 | | | | Avg | 56.1 | 60,1 | 57.4 | 57.0 | 53.2 | 50.5 | 0.94 | 55.5 | 49.0 | 51,1 | 54.9 | 56.0 | | E6 7821 | San Jose | Max | 88 | 95 | 92 | 87 | 84 | 71 | 89 | 92 | 74 | 72 | 84 | 89 | | | | Min | 51 | 52 | 50 | 47 | 36 | 31 | 27 | 42 | 38 | 38 | 44 | 64 | | | | Avg Max | 79.0 | 81.7 | 77.6 | 71.6 | 67.2 | 58°8 | 57.1 | 67.3 | 64.2 | 63.4 | 70°6 | 77.6 | | | | Avg Min | 54.2 | 56.7 | 54.4 | 53,1 | 48.4 | 43.8 | 38.7 | 50.6 | 44.5 | 47.3 | 52.8 | 53,4 | | | | Avg | 9.99 | 66.6 69.2 | 66.0 62.4 | 62,4 | 57.8 | 51,3 | 47.9 | 59,0 | 54,4 | 55.4 | 61,7 | 65,5 | | | | | | | | | | | | | | | | | | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | |---------|------------------------|---------|------|------|------|------|------|------|------|------|------|------|------|------| | E6 7824 | San Jose Decid. F.F.S. | Max | 06 | 98 | 87 | 91 | 85 | 69 | 89 | 7.8 | 75 | 74 | 91 | 91 | | | | Min | 67 | 50 | 48 | 777 | 33 | 30 | 27 | 40 | 36 | 37 | 45 | 46 | | | | Avg Max | 82.0 | 83.7 | 78.5 | 72.7 | 68,3 | 58,6 | 57.1 | 68.5 | 65.2 | 65.7 | 71.2 | 79.2 | | | | Avg Min | 53.2 | 54.9 | 52.6 | 51.3 | 43.6 | 42.1 | 36.3 | 49.4 | 42.5 | 9.94 | 52.4 | 52.2 | | | | Avg | 9°29 | 69,3 | 65.6 | 62.0 | 56.0 | 50,4 | 46.7 | 59.0 | 53.8 | 56.2 | 61.8 | 65.7 | | E7 7864 | San Matec | Мах | 85 | 95 | 95 | 85 | 83 | 67 | 67 | 75 | 71 | 71 | 85 | 83 | | | | Min | 50 | 65 | 50 | 48 | 39 | 30 | 31. | 42 | 39 | 41 | 94 | 64 | | | | Avg Max | 74.8 | 78.3 | 74.1 | 70.4 | 66.8 | 59.5 | 56.6 | 7.99 | 63,3 | 62.6 | 0.89 | 72.1 | | | | Avg Min | 53.1 | 55,2 | 53.7 | 53,5 | 48.7 | 9.44 | 39.2 | 50.3 | 45.5 | 47.1 | 52,2 | 52.3 | | | | Avg | 64.0 | 8,99 | 63.9 | 62.0 | 57.8 | 52,1 | 47.9 | 58.4 | 54.4 | 54.9 | 60.1 | 62.2 | | E2 7880 | San Rafael | Max | 88 | NR | 89 | 89 | 80 | 99 | 29 | 74 | 73 | 73 | 89 | 90 | | | | Min | 45 | NR | 48 | 97 | 39 | 31 | 29 | 43 | 36 |
38 | 42 | 97 | | | | Avg Max | 79.4 | NR | 77.3 | 74.0 | 67.6 | 59.4 | 56.4 | 67.1 | 63.6 | 62.7 | 71.0 | 75.6 | | | | Avg Min | 50.6 | NR | 52.0 | 52.5 | 48.1 | 42.9 | 37.8 | 6.64 | 43.3 | 46.2 | 50.1 | 51.2 | | | | Avg | 65.0 | NR | 64.7 | 63.3 | 57.9 | 51.2 | 47.1 | 58°2 | 53.5 | 54.5 | 9.09 | 63.4 | | E6 7912 | Santa Clara University | Мах | 88 | 95 | 91 | 88 | 83 | 70 | 67 | 92 | 73 | 73 | 89 | 90 | | | | Min | 65 | 52 | 48 | 42 | 33 | 30 | 25 | 40 | 36 | 35 | 42 | 97 | | | | Avg Max | 80,5 | 82.3 | 7.77 | 72.3 | 67.3 | 57.9 | 57.0 | 68,1 | 64.2 | 64.7 | 72.3 | 78.8 | | | | Avg Min | 52.8 | 54.9 | 52.1 | 50.7 | 45,1 | 40.9 | 35,1 | 48.0 | 41.7 | 9.44 | 50.5 | 51,8 | | | | Avg | 66.7 | 68,6 | 6.49 | 61,5 | 56.2 | 49.4 | 46.1 | 58.1 | 53.0 | 54.7 | 61.4 | 65.3 | | DO 7916 | Santa Cruz | Max | 92 | 103 | 89 | 84 | 88 | 77 | 9/ | 75 | 73 | 73 | 78 | 86 | | | | Min | 44 | 45 | 43 | 38 | 33 | 26 | 22 | 35 | 32 | 31 | 07 | 41 | | | | Avg Max | 9.69 | 79.1 | 72.7 | 73.2 | 67.2 | 60.7 | 59.3 | 66.2 | 63.7 | 62.8 | 9.79 | 72.5 | | | | Avg Min | 6.64 | 8.64 | 47.2 | 45.5 | 41.7 | 40.0 | 34.6 | 45.7 | 39,5 | 42.2 | 47.9 | 47.9 | | | | Avg | 59.8 | 64.5 | 0.09 | 59.4 | 54.5 | 50.4 | 47.0 | 56.0 | 51.6 | 52.5 | 57.8 | 60.2 | | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | NAU | FEB | MAR | APR | MAY | NOC | |------------|-------------------------|---------|----------|-----------|-----------|------|------|------|------|------|------|------|------|----------| | F9 7965 | Santa Rosa | Μax | 94 | 66 | 99 | 92 | 83 | 89 | 29 | 7.5 | 75 | 74 | 89 | 91 | | | | Min | 43 | 42 | 43 | 39 | 30 | 23 | 21 | 36 | 29 | 31 | 36 | 44 | | | | Avg Max | Max 81.2 | 8.48 | 81,4 | 72.9 | 68.5 | 57.0 | 55.4 | 66.5 | 64.5 | 63.5 | 70.5 | 78.5 | | | | Avg Min | 48,1 | 50.5 | 47.8 | 6.94 | 39.8 | 37.3 | 30.6 | 44.5 | 36.5 | 39°2 | 47.3 | 48.3 | | | | Avg | 64°7 | 67.7 | 9.49 | 59.9 | 54.2 | 47.2 | 43.0 | 55.5 | 50.5 | 51.5 | 58.9 | 63.4 | | F9 7964 | Santa Rosa Sewage Plant | Max | 98 | 95 | 91 | 85 | 92 | 61 | 09 | 89 | 63 | 71 | 80 | 83 | | | | Min | 42 | 39 | 07 | 36 | 29 | 21 | 20 | 33 | 28 | 31 | 34 | 43 | | | | Avg Max | 73.4 | 78.0 | 73.3 | 67.2 | 62.3 | 53,3 | 50.4 | 8°09 | 55.8 | 55.6 | 61.5 | 72.3 | | | | Avg Min | 47.6 | 9.67 | 46.2 | 47.0 | 40.5 | 36.5 | 31.5 | 44.0 | 36,3 | 39°4 | 44.7 | 47.6 | | | | Avg | 60.5 | 63.8 | 59.8 | 57.1 | 51.4 | 44.9 | 41.0 | 52.4 | 46.0 | 47.5 | 53,1 | 0.09 | | F8 8162 | Shelter Cove | Max | 98 | 74 | 7.1 | 70 | 63 | 62 | 89 | 99 | 62 | 09 | 65 | 74 | | | | Min | 36 | 47 | 47 | 45 | 42 | 41 | 39 | 45 | 38 | 39 | 43 | 44 | | | | Avg Max | 65.1 | 7.49 | 61.5 | 60.5 | 58.2 | 56.7 | 55.6 | 59.0 | 55.8 | 55.6 | 59.7 | 66.3 | | | | Avg Min | 49.4 | 52.6 | 50.0 | 50.5 | 48.3 | 46.7 | 43.5 | 6.64 | 45.2 | 47.2 | 50.2 | 51.6 | | | | Avg | 57.3 | 58.5 | 55.8 | 55.5 | 53.3 | 51.7 | 49.6 | 54.5 | 50.5 | 51.4 | 55.0 | 59.0 | | D2 8446-01 | Spreckels Sugar Company | Max | 69 | 94 | 84 | 98 | 06 | 80 | 69 | 75 | 75 | 71 | 92 | 76 | | | | Min | 94 | 45 | 47 | 40 | 32 | 28 | 22 | 36 | 30 | 38 | 40 | 42 | | | | Avg Max | 65.7 | 73,2 | 68.7 | 72.6 | 9.99 | 64.3 | 60°7 | 66,1 | 63.4 | 62.8 | 66.5 | 67.7 | | | | Avg Min | 50.9 | 52,3 | 51.0 | 48.5 | 42.7 | 41.3 | 33.5 | 46.1 | 39.5 | 44.2 | 49.5 | 51.7 | | | | Avg | 58.3 | 62.8 | 59.8 | 9.09 | 54.6 | 52.8 | 47.1 | 56,1 | 51.4 | 53.5 | 58.0 | 59.7 | | D2 8338-01 | Soledad C.T.F. | Max | 80 | 95 | 81 | 89 | 89 | 80 | 70 | 9/ | 74 | 73 | 79 | 82 | | | | Min | 42 | 43 | 42 | 39 | 30 | 27 | 20 | 36 | 29 | 32 | 38 | 40 | | | | Avg Max | 72,7 | 77.5 | 71.9 | 74.7 | 69°5 | 64.5 | 59,1 | 6°99 | 63.6 | 63.6 | 68.1 | 71.8 | | | | Avg Min | 50.3 | 51.0 | 0°65 | 45.5 | 41.8 | 39,1 | 33.2 | 48.2 | 38,3 | 42.0 | 47.5 | 49.2 | | | | Avg | 61.5 | 61.5 64.2 | 60,4 60,1 | 60,1 | 55,6 | 51,8 | 46.2 | 57.6 | 50.0 | 52.8 | 57.8 | 60.5 | | | | Avg | 61.5 | 64.2 | 60°4 | 60.1 | 55,6 | 51,8 | | i | - 1 | | - 1 | 52.8 57 | | O U O WILL | AMAN MOLLATA | | = | 2116 | GTO | TOC | 2012 | 250 | IAAI | 0 1 1 | OVV | 00 4 | 2444 | | |------------|---------------------------|---------|------|------|------|------|------|------|------|-----------|----------------|------|------|------| | NO. | 1 | | 100 | 202 | 7 | 5 | 3 | 21 | CAR | מאב | MAN | Y L | TAM. | 200 | | E2 8351 | Sonoma | Max | 100 | 102 | 100 | 93 | 80 | 99 | 62 | 9/ | 72 | 75 | 89 | 98 | | | | Min | 43 | 42 | 07 | 38 | 30 | 22 | 20 | 35 | 29 | 30 | 35 | 42 | | | | Avg Max | 88.5 | 89.2 | 84.0 | 73.5 | 67:1 | 56.3 | 54.4 | 67.6 64.2 | 64.2 | 64.3 | 73.2 | 82.3 | | | | Avg Min | 47.6 | 49.5 | 47.1 | 48.4 | 41.1 | 38.9 | 30.9 | 45.3 | 37.8 | 9.04 | 47.2 | 48.3 | | | | Avg | 68.1 | 69.4 | 65.6 | 61.0 | 54.1 | 47.6 | 42.7 | 56.5 | 51.0 | 52.5 | 60.2 | 65.3 | | D3 8849 | Templeton | Max | 103 | 105 | 100 | 95 | 87 | 77 | 72 | 79 | 76 | 78 | 92 | 98 | | | | Min | 45 | 43 | 40 | 39 | 22 | 19 | 17 | 37 | 29 | 31 | 38 | 42 | | | | Avg Max | 89.3 | 92.5 | 9.98 | 77.2 | 69.5 | 63.9 | 0.09 | 68,3 | 63.5 | 63.6 | 71.9 | 79.9 | | | 1000 | Avg Min | 49.0 | 50.4 | 47.3 | 45.8 | 37.8 | 36.4 | 31.0 | 46.7 | 37.5 | 40.8 | 48.8 | 48.2 | | | | Avg | 69.2 | 71.4 | 67.0 | 61.5 | 53.7 | 50.2 | 45.5 | 57.5 | 50.5 | 52,2 | 60.4 | 40.5 | | F9 9122 | Ukiah | Max | 104 | 103 | 101 | 93 | 85 | 70 | 89 | 77 | 73 | 78 | 95 | 104 | | | | Min | 49 | 94 | 95 | 38 | 28 | 21 | 19 | 33 | 29 | 32 | 38 | 42 | | | | Avg Max | 95.1 | 90.6 | 89.5 | 74.6 | 65.8 | 6.09 | 59.0 | 66.6 61.7 | 61.7 | 62.0 | 75.9 | 84.0 | | | | Avg Min | 53.7 | 54.2 | 50.5 | 47.0 | 41.3 | 37.3 | 31.1 | 45.6 | 45.6 37.0 | 39.7 | 48.0 | 51,0 | | | | Avg | 74.4 | 72.4 | 70.0 | 8.09 | 53.6 | 49.1 | 45.1 | 56.1 | 49.4 | 50.9 | 62.0 | 67.5 | | E4 9185 | Upper San Leandro Filters | Max | 80 | 92 | 87 | 88 | 79 | 69 | 63 | 74 | 72 | 69 | 85 | 84 | | | | Min | 47 | 52 | 67 | 45 | 34 | 32 | 31 | 41 | 35 | 35 | 42 | 47 | | | | Avg Max | 71.1 | 74.4 | 71.1 | 4.69 | 65.2 | 58.5 | 54.7 | 64.7 | 61.7 | 4.09 | 0.99 | 70.3 | | | | Avg Min | 50.1 | 53.7 | 52.2 | 50.7 | 46.3 | 41.9 | 37.9 | 48.9 | 41.9 | 43.6 | 49.5 | | | | ٠ | Avg | 9.09 | 64.1 | 61.7 | 60.1 | 55.8 | 50.2 | 46.3 | 56.8 | 51.8 | 52.0 | 57.8 | 60.4 | | E3 9305 | Veterans Home | Max | 100 | 102 | 96 | 90 | 76 | 89 | 09 | 80 | 72 | 9/ | 92 | 98 | | | | Min | 84 | 40 | 44 | 04 | 36 | 26 | 26 | 40 | 32 | 32 | 40 | 94 | | | | Avg Max | 87.8 | 88.1 | 81.5 | 72.4 | 66.1 | 58.1 | 54.5 | 64.7 | 61.8 | 65.8 | 76.8 | 85.7 | | | | Avg Min | 51.5 | 52.9 | 51.6 | 51.4 | 44.9 | 40.7 | 34.8 | 48.2 | 41.6 | 42.7 | 50.7 | | | | | Avg | 69.6 | 70.5 | 9.99 | 61.9 | 55.5 | 49.4 | 9.47 | - 1 | 56.4 51.7 54.2 | 54.2 | 63 8 | | | NUMBER | STATION NAME | | JUL | AUG | SEP | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | NON | |-----------|--------------------|---------|------|------|------|------|------|------|------|------|------------|------|------|------| | E4 9423 | Walnut Creek 2 ESE | Max | 100 | 102 | 96 | 94 | 81 | 79 | 65 | 76 | 76 | 76 | 91 | 100 | | | | Min | 94 | 48 | 777 | 40 | 27 | 21 | 20 | 33 | 30 | 31 | 38 | 41 | | | | Avg Max | 88.2 | 87.2 | 83.2 | 72.6 | 67.4 | 55,1 | 53,9 | 66.0 | 64.4 | 64.1 | 71.9 | 80.6 | | | | Avg Min | 50.9 | 52.7 | 50.4 | 46.5 | 39.5 | 36.9 | 29.1 | 44.6 | | | 48.4 | | | | | Avg | 9.69 | 70.0 | 66.8 | 59.6 | 53.5 | 46.0 | 41.5 | 55.3 | 51.1 | 52.9 | 60.3 | 64.7 | | 01 9473 | Watsonville WW | Max | 87 | 91 | 84 | 84 | 90 | 9/ | 70 | 76 | 75 | 72 | 75 | 79 | | | | Min | 94 | 45 | 45 | 42 | 33 | 27 | 26 | 37 | 33 | 34 | 38 | 41 | | | | Avg Max | 67.7 | 72.6 | 9.99 | 71.5 | 67.8 | 63.6 | 58.6 | 65.8 | 62,3 | 62.0 | 65.2 | 67.6 | | | | Avg Min | 50.3 | 51.5 | 50.2 | 48.3 | 42.7 | 40.3 | 34.7 | 47.1 | 40.4 | 43.2 | 48.1 | 48.9 | | | | Avg | 59.0 | 62.1 | 58.4 | 59,9 | 55,3 | 52.0 | 46.7 | 56.5 | 51.4 | 52.6 | 56.7 | 58.3 | | 9 9770 | Woodacre | Max | 96 | 100 | 66 | 92 | 92 | 99 | 65 | 73 | 71 | 72 | 88 | 95 | | | | Min | 41 | 43 | 39 | 37 | 26 | 21 | 18 | 31 | 28 | 31 | 36 | 40 | | | | Avg Max | 85.0 | 85.6 | 81,4 | 70.1 | 65.1 | 56.6 | 54.0 | 64.3 | 9.09 67.79 | 57.6 | 67.6 | | | | | Avg Min | 48.1 | 49.4 | 48.0 | 46,6 | 39,7 | 36,4 | 29.8 | 44.0 | 38.5 | 41.0 | 48.4 | 46.3 | | | | Avg | 9.99 | 67.5 | 64.7 | 58.4 | 52.4 | 46.5 | | | | 49.3 | 58.0 | 61.1 | | 3 9675 41 | Wild Horse Valley | Max | 92 | 96 | 93 | 98 | 76. | 70 | 70 | 74 | 70 | 92 | 98 | 92 | | | | Z. | 45 | 48 | 48 | 47 | 40 | 28 | 30 | 40 | 32 | 34 | 41 | 48 | | | | Avg Max | 82.1 | 82.8 | 77.8 | 71.0 | 65.5 | 60,3 | 57.0 | 67.2 | 62.4 | 64.5 | 71.6 | 78.2 | | | | Avg Min | 55.5 | 56.5 | 53.4 | 50.5 | 47.5 | 43.5 | 37.5 | 49.0 | 42.9 | 44.5 | 48.3 | 53.1 | | | | Avg | 68.8 | 9.69 | 65.6 | 8.09 | 56.5 | 51.9 | 47.2 | 58.1 | 52.6 | 54.5 | 60.0 | 65,6 | | | | Max | | | | | | | | | | | | | | | | Min | | | | | | | | | | | | | | | | Avg Max | | | | | | | | | | | | | | | | Avg Min | | | | | | | | | | | | | | | | Avg | #### MONTHLY EVAPORATION | NUMBER | STATION NAME | | JUL | AUG | SEP | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | |---------|-----------------------------|------------------------------------|-------|------|--------------|------|------|------|------------|------------|-------------|------|------|------| | E6 0053 | Alamitos Perc. Pond | Evap | 8.97 | 9.09 | 6,15 | 3,35 | 2.14 | , 99 | 1.44 | 2.03 | 3.39 | 4.11 | 6,59 | 9.21 | | | | Wind
Movement | 1486 | 1599 | 1329 | 1571 | 979 | 959 | 1470 | 1290 | 1571 | 1730 | 1663 | 1910 | | | | Water Temp
Avg. Max | NR | | | Water Temp
Avg Min | NR | | | Precip. | U | 0 | т | 7.37 | .13 | 2.11 | 4.45 | 2.91 | 3,27 | 3.26 | .42 | т | | | | Air Temp
Max | 90 | 96 | 93 | 88 | 82 | 73 | 65 | 77 | 75 | 73 | 89 | 93 | | | | Air Temp.
Min | 48 | 47 | 37 | 37 | 31 | 28 | 22 | 37 | 34 | 35 | 39 | 44 | | | | Air Temp.
Avg Max | 80.7 | 82.3 | 78.4 | 71.7 | 66.3 | 59,4 | 55.7 | 67.0 | 63,5 | 63.4 | 70.5 | 80.0 | | | | Air Temp
Avg Min | 51,6 | 53.6 | 49,1 | 47.1 | 43.3 | 39.0 | 34.0 | 45.7 | 40.3 | 44.3 | 49.4 | 50.4 | | | | Air Temp.
Avg | 66,2
| 68,0 | 63,8 | 59.4 | 54.8 | 49.2 | 44.9 | 56.0 | 51.9 | 53.9 | 60.0 | 65.2 | | | | | | | | | | | | | | | | | | E7 1206 | Surlingeme | Evap | 7.84 | 7.53 | 5.09 | 3.09 | 1.59 | .89 | 1.32 | 1.46 | 2.98 | 3.70 | 5.58 | 7.29 | | | | Wind
Movement | 2908 | 1908 | 1142 | 1138 | 490 | 309 | 703 | 560 | 990 | 1200 | 1310 | 1390 | | | | Water Temp
Avg Max | 79.7 | 84.1 | 80,5 | 73.0 | 67.8 | 60.0 | 55,1 | 69,1 | 70.4 | 74.5 | 81.4 | 84.8 | | | | Water Temp
Avg Min | 53.3 | 55.5 | 55.7 | 53.5 | 47.9 | 45.7 | 40.5 | 51.1 | 45.4 | 48.5 | 53.5 | 55.3 | | | | Precip
Air Tomo | 0 | .04 | 0 | 6,68 | . 37 | 2.81 | 3.63 | 3.15 | 4.17 | 3,66 | .45 | 0 | | | | Air Temp
Max | 85 | 86 | 86 | 78 | 76 | 65 | 64 | 69 | 69 | 71 | 84 | 79 | | | | Air Temp.
Min. | 47 | 47 | 44 | 41 | 34 | 29 | 25 | 36 | 34 | 35 | 41 | 42 | | | | Air Temp
Avg Max.
Air Temp. | 72.6 | 76,3 | 72.3 | 69.2 | 65,3 | 56.6 | 55.1 | 64.5 | 62,7 | 63,3 | 69.2 | 72.6 | | | | Avg Min. | 52.6 | 54,0 | 50.5 | 50,1 | 45.7 | 42.2 | 35.4 | 47.7 | 41.2 | 43.3 | 49.7 | 46.2 | | | | Air Temp
Avg | 62.6 | 65.2 | 61.4 | 59.7 | 55.5 | 49.4 | 45.3 | 56,1 | 52.0 | 53.5 | 59.5 | 60.4 | | | | | | | | | | | | | | | | | | P9 2105 | Coyote Dam (Lake Mendocino) | Evop | 12.75 | 9.95 | 7.67 | 3,21 | 1,80 | 1,10 | 1.20 | 2.11 | 3.11 | 3.63 | 5.97 | 9,28 | | | | Mavement
Water Temp. | 1654 | 1583 | 1154 | 781 | 347 | 164 | 310 | 534 | 1146 | 1404 | 1348 | 1692 | | | | Avg Mox
Water Temp | 86.7 | 83.5 | 79.6 | 67.8 | 60.1 | 53.9 | 49.6 | 59.9 | 60.3 | 61.1 | 75.2 | 83.2 | | | | Avg. Min.
Precip. | 54.0 | 54.6 | 50.8 | 48.5 | 41.0 | 41.0 | 32.1 | 47.5 | 37.3 | 41.5 | 48.2 | 51.6 | | | | Air Temp | 0 | .16 | .51 | 8,60 | 2.72 | 5,15 | 4.20 | 5.04 | 5.87 | 7.37 | ,80 | .18 | | | | Max
Air Temp
Min. | 104 | 103 | 102 | 94 | 87 | 74 | 68 | 75 | 71 | 74 | -90 | 102 | | | | Air Temp | 95.0 | 90.7 | 43 | 76.7 | 69.4 | 62.9 | 15
58.0 | 30
64,6 | 25
61.·3 | 59.4 | 71.9 | 83.8 | | | | Avg. Mas.
Air Temp
Avg. Min. | - | | 89.9
48.2 | 44.1 | 39.5 | 37.3 | 27.8 | 43.2 | 33.9 | 37.5 | 43.7 | 48.4 | | | | Air Temp | 73.6 | 71.6 | 69.1 | 60.4 | 54.5 | 50.1 | 42.9 | 53.9 | 47.6 | 48.5 | 57.8 | 66.1 | | | | Avg | 73.0 | 71.0 | 07.1 | 00.4 | 34.5 | 30.1 | 1 42.5 | 3317 | 4710 | 40.5 | 37.0 | | | Z6 2109 | Coyote Reservoir | Evap | 7,34 | 8.09 | 5.09 | 3.11 | 1.75 | .84 | .78 | 1.44 | 2.61 | 2.77 | 4.23 | 6.76 | | | | Wind
Movement | 471 | 729 | 505 | 412 | 279 | 101 | 257 | 84 | 172 | 128 | 169 | 383 | | | | Water Temp.
Avg Max | NR | NR | NR | NR | KE | NR | | | Water Temp.
Avg Min. | NR HR | NR | | | | Precip. | 0 | 0 | T | 2.42 | .43 | 2,60 | 6.22 | 6.39 | 3.79 | 5.48 | .45 | .01 | | | | Air Temp.
Max. | 96 | 100 | 98 | 95 | 85 | 72 | 66 | 74 | 70 | 72 | 90 | 94 | | | | Air Temp.
Min. | 45 | 45 | 41 | 37 | 28 | 23 | 18 | 35 | 30 | 32 | 35 | 40 | | | | Air Temp.
Avg Max. | 86.1 | 87.8 | 62.1 | 72.3 | 66.0 | 60.0 | 56.3 | 65.2 | 60.8 | 61.6 | 69.3 | 77.7 | | | | Air Temp.
Avg. Min. | 48.3 | 50.7 | 48.1 | 45.6 | 40.2 | 35.9 | 29.5 | 44.6 | 37.1 | 41.0 | 46.5 | 47.6 | | | | Air Temp.
Avg. | 67.2 | 69.2 | 65,1 | 59.0 | 53.1 | 48.0 | 42.9 | 54.9 | 49.0 | 51.3 | 57.9 | 62.6 | | | | | | | | | | | | | | | | | | E3 2580 | Duttons Leading | Evop | 8,71 | 6.51 | 5,76 | 3.71 | 1.95 | 1.00 | 1.48 | 1.77 | 3,38 | 3,33 | 5.52 | 8.69 | | | | Wind
Movement | 3810 | 3916 | 3037 | 2846 | 1470 | 1151 | 1521 | 1379 | 1910 | 2071 | 2984 | 3834 | | | | Water Temp.
Avg Max | 62.9 | 84.9 | 77.2 | 70,9 | 63,6 | 55.9 | 50.7 | 65.4 | 65.7 | 68,4 | 77.1 | 79.9 | | | | Water Temp
Avg. Min. | 52.2 | 54.8 | 53.0 | 51.4 | 43.8 | 42.5 | 34,5 | 48.1 | 42.0 | 43.5 | 50.7 | 53.3 | | | | Precip. | 0 | .07 | .06 | 7.95 | .78 | 2.61 | 4.12 | 3.36 | 5.07 | 4.46 | .19 | T | | | | Air Temp
Mox | 83 | 94 | 92 | 87 | 79 | 64 | 61 | 72 | 70 | 70 | 8.6 | 84 | | | | Air Temp
Min. | 48 | 51 | 47 | 43 | 36 | 26 | 24 | 40 | 33 | 34 | 39 | 47 | | | | Air Temp.
Avg. Max. | 74.5 | 78.3 | 74.3 | 71,9 | 67.5 | 59.9 | 53.8 | 65.0 | 63.3 | 62.4 | 69.4 | 74.2 | | | t e | Air Temp
Avg. Min. | 52.5 | 55.6 | 51.7 | 50.8 | 42.6 | 42.1 | 33,2 | 47.2 | 41.1 | 42.2 | 49,0 | 51.0 | | | | Air Temp. | 63,5 | 67,0 | 63.0 | 61.4 | 55.2 | 51.0 | 43.5 | 56,1 | 52.2 | 52.3 | 59.2 | 62.6 | TABLE A-4 | NUMBER | STATION NAME | | JUL | AUG | SEP | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JU | |------------|------------------------|-------------------------------------|--------|------|------|-------|------|------|------|-------|------|------|------|------| | 1 4022-10 | Bollister Costs | Evap | 9.04 | 8.14 | 5.12 | 3,57 | 3.15 | 2.26 | 1.73 | 2.47 | 3.34 | 3,01 | 5,14 | 6.58 | | | | Wind
Movement | NR | RE | NR | NR | NR | NR | NB | NR | HR | NR | NR | NR | | | | Water Temp
Avg. Max | NR | NR | NE. | NR NB | MR | | | | Water Temp
Avg Min | NR | NR | MR | NR | WR | NR | NR | NR | NR. | NR | NR | WR | | | | Precip | .02 | Т | T | 1,26 | .26 | 2,16 | 4.42 | 3.23 | 2.57 | 3,82 | .29 | .13 | | | | Air Temp.
Max | HR | NR | NR | NR | NR | NR | NR | NE. | BR | NR | NR | NR | | | | Air Temp.
Min | NR | NR | NR | NR | NR | N'B. | NR | NR | NR | HB | HR | NR. | | | | Air Temp.
Avg. Max | NR | NR | NR | NR | NR | ĦR | NR | MR | WR | HR | NR | NR | | | | Air Temp
Avg Min | NR | NR | NR | NR | KR | NR | NR | NR | HR | HR | HTR | NE | | | | Air Temp | NTB. | NR | HR | NR | NR | NR | NR | NR | NR | MR | NR | NR | | t6 4922 | Lexington Reservoir | Evap | 8.81 | 8,32 | 6.10 | 3.01 | 1.76 | .87 | 1.15 | 1.62 | 2.58 | 3.23 | 4.79 | 7.8 | | | | Wind
Movement | 878 | 885 | 835 | 1252 | 800 | 779 | 943 | NR | 625 | 1127 | 697 | 92 | | | | Water Temp.
Avg. Max | NR | NR | WR | NR | NR | NR | NR | NR | NR | HR | HR | NR | | | | Water Temp
Avg Min | NR | MR | NR | NR | HR | KR | HR | NR | NR | HR | HR | NR | | | | Precip | 0 | .02 | .01 | 14.69 | .48 | 4.19 | 9.71 | 10.02 | 7.00 | 8,00 | .80 | | | | | Air Temp
Mox | 95 | 98 | 91 | 91 | 80 | 65 | 65 | 73 | 72 | 76 | 88 | 8 | | | | Air Temp.
Min. | 43 | 45 | 42 | 37 | 32 | 26 | 22 | 35 | 31 | 32 | 38 | 4 | | | | Air Temp.
Avg. Max.
Air Temp. | 85.1 | 85.9 | 81.5 | 70.5 | 64.9 | 58.1 | 54.7 | 64.7 | 61.2 | 61.7 | 69.4 | 78. | | | | Air Temp.
Avg. Min. | 48.5 | 50.0 | 47.9 | 45.4 | 43.5 | 39.6 | 33.8 | 45.9 | 38.5 | 41.4 | 47.8 | 48. | | | | Air Temp
Avg | 66.8 | 68.0 | 64.7 | 60.0 | 54.2 | 48.8 | 44.2 | 55,3 | 49.8 | 51.6 | 58.6 | 63. | | | | Evap | 70. 70 | 9,77 | 7.22 | 4.03 | 2.16 | 1.11 | 1.24 | 2.25 | 2.95 | 3.21 | 4.72 | 9.9 | | 5 4996 | Livermore Sewage Plant | Wind
Movement | 3230 | 3160 | 2720 | 2680 | 1340 | 1300 | 1560 | 1340 | 1480 | 1230 | 1030 | 266 | | | | Water Temo | | NR | | | Avg Max.
Water Temp | MR | NR. | NTR. | NR. | NR. | NR | NR. | NR. | NR | NR | NR | NR | | | | Avg. Min.
Precip. | 0 | 0 | 0 | 5.33 | .30 | 1,93 | 2.03 | 5,60 | 3,10 | 3.35 | .47 | .0 | | | | Air Temo | 99 | 100 | 97 | 98 | 76 | 67 | 65 | 74 | 72 | 72 | 88 | 9 | | | | Air Temp
Min. | 44 | 45 | 41 | 38 | 30 | 20 | 19 | 33 | 29 | 24 | 35 | 4 | | | | Air Temp | 85.5 | 85,6 | 82.2 | 72.7 | 67.0 | 58.3 | 54.4 | 66.6 | 62.8 | 62.3 | 71.0 | 80. | | | | Avg. Max.
Air Temp
Avg. Min. | 49.4 | 50.7 | 47.9 | 46.5 | 38.8 | 35.8 | 28.3 | 44.1 | 37.1 | 39.1 | 45.8 | 46. | | | | Air Temp
Avg | 67.4 | 68.2 | 65.0 | 59.6 | 52.9 | 47.0 | 41.4 | 55.4 | 50.0 | 50.7 | 58.4 | 63. | | | | | | | | | | | | | | | | | | E5 6144 | Hewark | Evop | 8.38 | 6.30 | 6.12 | 4.34 | 1,79 | 8,50 | 1.24 | 1.88 | 3.49 | 4.11 | 5.59 | 8.6 | | | | Wind
Movement | 1934 | 1562 | 1709 | 1671 | 748 | 507 | 865 | 780 | 1581 | 1651 | 1682 | 223 | | | | Water Temp
Avg. Max. | WR | NR | NR | NR | NR | FR | NR | NR | MR | MR | FR | MB | | | | Water Temp
Avg. Min. | NR | NR | NLK | HR | NR | NR | MR | NR | MB | MR | MR | 201 | | | | Precip. | 0 | 0 | 0 | 4.53 | . 34 | 2.20 | 1.51 | 2.88 | 3.09 | 4,19 | . 57 | .0 | | | | Air Temp.
Mox. | 82 | 95 | 89 | 86 | 83 | 69 | 63 | 74 | 69 | 69 | 84 | 8 | | | | Air Temp
Min. | 49 | 52 | 48 | 44 | 33 | 26 | 24 | 40 | 37 | 37 | 43 | 4 | | | | Air Temp.
Avg Max. | 74.5 | 77.9 | 73.6 | 70.9 | 66,2 | 56.7 | 53.6 | 64.4 | 62.0 | 61.4 | 67.3 | 73. | | | | Air Temp.
Avg. Min. | 52.3 | 54.8 | 53.8 | 52.6 | 45.1 | 41.8 | 35.1 | 49.0 | 42.6 | 46.5 | 51,6 | 52. | | | | Air Temp
Avg | 63,4 | 66.4 | 63.7 | 61.8 | 56.2 | 49.3 | 44.4 | 56.7 | 52.3 | 54.0 | 59.5 | 62. | | D2 7845-10 | San Luces Guidici | Evop | 9.01 | 8,32 | 5.82 | 4.56 | 3.48 | 2.67 | 3.18 | 3, 67 | 3,78 | 4,33 | 6.78 | 7.2 | | | 000 2000 0010101 | Wind
Movement | NR | MR | HR | MR | HR | NR | WR | WR | NR | NR | NR | ME | | | | Water Temp
Avg. Max. | | WR | HR | WR | MR | HR | HR | HR | NR | NR | NR | 162 | | | | Water Temp | HR | MR | MR | NR | HTR | MR | HR | MR | HE | WR | NR | HE | | | | Avg. Min.
Precip. | 0 | 0 | .03 | .21 | T | 2.24 | 3.34 | 3.41 | 2.86 | 1.75 | .32 | | | | | Air Temp.
Max. | HTR | NR | NR | HR | HTR | NA | MR | HR | MR | NR | NR | M | | | | Air Temp
Min. | HTR | NR | HTR. | HR | MR | MER | HR | MR | MR | MR | MR | 503 | | | | Air Temp | HR | HR | HR | HR | MR | HR | HR | NR | HR | NR | HR | NI | | | | Avg. Mox.
Air Temp.
Avg Min. | MR | WR | HR | MIR | WR | MR | WR | MR | HR | HR | ME | 1973 | | | | Air Temp. | 1 | 1 | | 1 | 1 | 1 | 1 | | 1 | 1 | - | - | #### TABLE A-4 MONTHLY EVAPORATION #### NUMBER STATION NAME JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN Evop. 4.13 5.05 3.21 n2 7959-10 3.39 2.12 1.82 2.02 2.68 3.04 3.82 4.52 5.89 Senta Rita Muther Wind Movement NR NR HR NR NR MR NR NR NR NR HR NR Water Temp Avg. Max NE NR MR MR HR NR NR NR NR NR KR NR Woter Temp Avg. Min. MR HR NR NR HR MR NR. NR WR HR WR NR Precip. T .01 . 07 .97 . 47 2.73 2.71 3.96 3.51 3.92 .16 T Air Temp. Mox HR MR MR NR WE MR ME NR NR NR NR NR Air Temp. MR NR NR HR MB NR HR NR NR NR NR HR Air Temp. Avg. Max NR MR NR HR NR NR NR NR NR MR MR NR Air Temp Avg Min NR NR NR NR NR HR NR NR HR MR NR MR Air Temp
NR NR HR NR NR NR NR NR NR NR NR NR Evan P9 7964 8.16 7.94 6.03 3.41 1.93 1,88 1.18 1.57 Santa Rosa Sewage Plant 3.16 3,32 4.53 6,10 Wind Movement 2836 2898 2076 2319 1014 723 1533 1655 2488 2890 2639 2749 Woter Tems Avg. Mox NR NR MR NR NR NR NR NR NR MR NR MR Woter Temp NR NR NR NR NR HR NR HR. NR KR NR NR Precip 0 4.40 .09 .24 7.81 .83 4.87 2.08 4 94 5.42 . 56 0 Air Temp Mox. 86 95 91 76 71 80 83 85 61 60 68 63 Air Temp. Min. 42 39 ΔN 36 29 21 20 33 28 31 34 43 Air Temp. Avg. Max. Air Temp. 73.4 78.0 73.3 67.2 62.3 53.3 50.4 60.8 55.8 55.6 61.5 72.3 47.6 49.6 46.2 47.0 40.5 36.5 31.5 44.0 36.3 39.4 44.7 47.6 Avg. Min. Air Temp Avg. 44.9 60.5 63.8 59.8 57.1 51.4 41.0 52.4 46.0 47.5 53.1 60.0 Evop F9 7965-03 Santa Rosa Pedranzini 7.08 7.03 4.88 2.73 1.77 .78 1.06 1,65 2.77 2.97 4.86 5.50 Wind Movement HR NR NR HR NR NR NR NR NR NR MR WR Water Temp Avg. Max. Water Temp Avg. Min. Hk NR NR HR NR NR NR NR NR NR HR NR NR NR MR MR NR NR WR NR NR Precip. 0 . 02 .15 8,19 .63 3,45 5.11 2.89 5.03 .46 τ 4.95 Air Temp NR MR HR Mox Air Temp Min. NR NR NR HR NR NR HR NR. NR HR NR MR Air Temp Avg. Max. NR NR NR HR MR HR NR NR NR NR MR Air Temp Avg Min. NR NR NR NR NR HR NR NR NR NR NE MB Air Temp Avg NR HR NR Evop D2 8338-01 7.95 7.79 5.56 5.16 3.24 2.67 2.65 2,85 4.17 4.79 6.40 7.75 Soledad C.T.F. Wind Movement Water Temp Avg. Max. NR HR NR HR MR NR MR NR HR NR 4218 4578 NR NR NR 52.9 64.7 58.1 54.0 66.1 65.2 67.8 72.8 77.5 Water Temp Avg. Min. 40.7 47.4 NR NR NR 43.7 35.7 46.5 40.0 43.4 47.1 NR Precio. 0 0 0 .25 . 04 1.78 2.46 2.12 2.65 1.73 .14 .23 Air Temp. Mox. яq 89 80 70 76 74 70 80 95 81 73 82 Air Temp. Min. 42 43 42 39 30 27 20 36 29 32 38 40 Air Temp. Air Temp. Avg. Max Air Temp. Avg. Min. Air Temp. Avg 72.7 77.5 71.9 74.7 69.5 64.5 59.1 66.9 63.6 63.6 68.1 71.8 41.8 50.3 51.0 49.0 45.5 39.1 33.2 48.2 38.3 42.0 47.5 49.2 61.5 64.2 60.4 60.1 55.6 51.8 46.2 57.6 50.0 52.8 57.8 60.5 Evap 7.75 E3 9861 Yountville Gambla 8,33 5.53 3.35 2.72 .97 1.32 1.41 2.72 2.87 4.92 7.43 Wind Movement NR HR NR NR NR HR MR NR NR NR NR 1682 Water Temp Avg. Max NR NR NR HR NR NR NR MR NR HR HR MR Water Temp Avg Min. NR ЖR NR ₩R NR NR NR NR Precip. n 02 02 11.36 .63 3.96 8.92 2.62 5 66 4 64 . 52 Ť Air Temp. Max. NR NR NR NR NR NR NR 69 73 64 91 NR Air Temp Min. NR HR NR NR NR NR NR NR 28 30 38 42 Air Temp. Avg Moz NR 60.9 61.2 69.5 78.0 NR NR NR NR NR HR NR NR NR NR MR MR NR HR NR 35.8 39.7 46.8 47.9 Air Temp. Avg. NR NR NR 48.4 58.2 MR NR NR NR NR 50.4 63.0 APPENDIX B SURFACE WATER FLOW ### SURFACE WATER FLOW This appendix presents surface water measurement data collected and assembled by the Department of Water Resources. It contains information collected in the Central Coastal Area during the 1963 water year covering the period from October 1, 1962 through September 30, 1963. ### Maximum and Minimum Tides There are usually two high and two low waters in a day. Tides follow the moon more closely than they do the sun, and the lunar or tidal day is about 50 minutes longer than the solar day. This causes the tide to occur later each day, and a tide which has occurred near the end of one calendar day will be followed by a corresponding tide that may skip the next day and occur in the early morning of the third day. Also, the two high and two low tides are usually unequal. They are commonly designated as higher high, lower high, higher low, and lower low tides. Table B-1 on pages B-6 and B-7 lists maximum and minimum tides at the Sacramento River at Collinsville and Suisun Bay at Benicia Arsenal, respectively. These data are obtained from graphical charts plotted by continuous water stage recorders. The values are in feet above -13.05 feet USC&GS mean sea level datum of 1929 at Collinsville and above -10.00 feet at Benicia Arsenal. The values in most cases represent higher high water and lower low water. During a calendar day in which three instead of four tides occurred the high value represents lower high water in the case where higher high tide did not occur and the low value represents higher low water in the case where lower low tide did not occur. The maximum and minimum values at the bottom of each monthly column represent the extremes observed during that month. At the bottom of each table the maximum gage height of record shown is measured from the same datum as the daily high and low values. ### Daily Mean Discharge Table B-2 on pages B-8 and B-9 presents daily mean discharges in Arroy de los Coches near Milpitas and in Butano Creek near Pescadero. Each of these stream gaging stations is equipped with a continuous water stage recorder. Each has a stage discharge relationship or rating developed. The rating gives the flow or discharge in cubic feet per second (cfs) for each water stage or gage height at a station. The rating is developed by making streamflow measurements with a current meter at various water stages ranging from near minimum to near maximum. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel is of loose shifting sand and gravel or where vegetative growth builds up in the channel changing the flow regime. Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the discharge. The mean, maximum, and minimum values at the bottom of each monthly column are representative of that month and year only. The acre-feet value for each month is a total of the daily values which are converted to acre-feet for the computation. The mean discharge under "Water Year Summary" is an average of the monthly means. The maximum and minimum discharges are absolute instantaneous extremes that occurred during the year. The total acre-feet is the sum of the monthly acre-feet values. The streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. The results are affected by inherent inaccuracies in procedures and equipment. It is, therefore, necessary to establish limits of accuracy for the reported data. The following is a listing of significant figures used in reporting streamflow data: - 1. Daily flows cubic feet per second - 0.0 9.9 Tenths - 10 99 2 significant figures - 100 up 3 significant figures - 2. Means cubic feet per second - 0.0 99.9 Tenths - 100 999 3 significant figures - 1000 above 4 significant figures Water year totals are reported to a maximum of four significant figures. TABLE B-1 DAILY MAXIMUM AND MINIMUM TIDES SACRAMENTO RIVER AT COLLINSVILLE 678F-000 NO. 671110 | DATE | OCT. | NOV | DEC. | JAN. | FEO | MAR | APR | MAY | JUNE | JULY | AUG | SEPT. | DATE | |-------------|-------|-------|-------|----------------|-------|--------|------------|--------------------|------------------|----------------|--------------|--------------|------| | - | 15:32 | 15:31 | 11:91 | 11:22 | 17:89 | 19:83 | 11:38 | 12:35 | 11:12 | 12:23 | 13:23 | ## H | 1 | | 2 | 19:29 | 11:31 | 17:22 | 11:21 | 13:11 | 19:17 | 11:22 | 13:28 | 11:35a | 14.99 | 15:38 | 12 | 2 | | 3 | 13:39 | 11:88 | 17:22 | 15:32 | 12:33 | 11:33 | 11:22 | 12:23 | 15.05E
12.70E | 14.42
12.25 | 13:33 | | 3 | | 4 | 12:33 | 13:89 | 17:27 | 15:22 | 12:33 | 15:82 | 13:57 | 12:22 | 16.41
12.50E | 12:24 | 15:13 | 17,60E | 4 | | 3 | 16.15 | 17:33 | 11:13 | 13:37 | 13:23 | 17:38 | 11:31 | 15:22 | 16.61
12.35g | 16.61 | 11:22 | | 3 | | 4 | 19:00 | 17:52 | 17:88 | 15:17 | 13:23 | 11:17 | 11:53 | 11:43 | 16:00
12:10s | | 11:23 | ** | | | 7 | 12:83 | 11:71 | 15:53 | 19:23 | 13:33 | 11:48 | 15:37 | 15:22 | 17.08
12.138 | 70E | 13:33 | # | 7 | | | 11:85 | 15:88 | 12:33 | 13:82 | 17:27 | 12:33 | 13:33 | 19:52 | 17.20
11.85E | # | 19:33 | | | | , | 10.26 | 11:23 | 14:74 | 11:11 | 17:11 | 16:20 | 16.50 | 15:33 | 17.10
11,90g | === | 11:12 | 盟 | , | | 10 | 12:10 | 15:31 | 10.00 | 17:02
11:95 | 17:33 | 13:81 | 11:33 | 19:15 | 17.36
12.20E | ## H | 11:22 | # | 10 | | - 11 | 12:37 | 12:88 | 19:17 | 11:33 | 13:77 | 13:33 | 11:78 | 15:1% | 16.90
12.05E | - | 12:33 | 離 | 1 | | 12 | 17:15 | 12:17 | 17:87 | 11:22 | 12:32 | 13:88 | 15:29 | 16.24
11.95E | 16,72
12,138 | - 12 | 12:18 | | 12 | | 13 | 13:22 | 12:00 | 12:32 | 13:83 | 13:33 | 11:38 | 13:13 | 16.21
12.20g | 16,30
12,158 | 19:23 | 12:37 | | 13 | | 10 | 13:33 | 15:78 | 11:17 | 11:23 | 15:23 | 13:28 | 13:71 | 16.08
12.21E | 12:38 | 11:12 | 11:13 | ## H | 14 | | 15 | 17.66 | 16.40 | 12:18 | 17:42 | 18:53 | 15:57 | 11:33 | 15.00
12.23E | 12:43 | 11:2 | 13:33 | ## ## | 15 | | 16 | 17:29 | 11:37 | 19:12 | 17:38 | 15:23 | 11:00 | 13:86 | 13.60E
12.25E | 11:13 | 11:21 | 13:83 | # | 16 | | 17 | 13:28 | 13:33 | 19:38 | 13:12 | 15:44 | 13:55 | 13:38 | 15:11 _m | 17:37 | 11:13 | 11:15 | # | 17 | | 16 | 17:32 | 18:33 | 13:44 | 13:33 | 12:13 | 11:11 | 13:88 | 12:30a | 11:43 | 17:87 | 11:33 | = | 10 | | 19 | 13:16 | 17:17 | 12.56 | 13:82 | 16:25 | 18:31e | 15:53 | 11:98 _e | 13:25 | 11:78 | H:H | - ME | 19 | | 20 | 12:12 | 11:56 | 12.75 | 17:81 | 12:31 | 17:33 | 11:13 | 13:22 | 17:23 | 11:31 | 19:31 | MA. | 20 | | 21 | 15.92 | 11:00 | 19:50 | 11:48 | 12:87 | 11:93 | 15:35 | 12:33 | 17:53 | 17:82 | 11:38 | # | 21 | | 22 | 13:30 | 13:28 | 15:27 | 11:33 | 11:47 | 11:37 | 19:28 | 11:11 | 11:31 | 13:13 | 罐 | # | 22 | | 23 | 12:17 | 15:33 | 12:28 | 11:11 | 11:99 | 11:39 | 17:88 | 13:12 | 17:38 | 11:17 | ** | | 25 | | 24 | 12:17 | 12:07 | 12:37 | 11:33 | 12:87 | 11:78 | 11:43 | 17.61
12.058 | 11:E | 12:17 | ** | *** | 24 | | 25 | 15:31 | 11:82 | 11:# | 11:81 | 19:18 | 17:33 | 13:88 | 17:33. | 11:33 | 12:83 | # | = | 25 | | 26 | 12:01 | 19:35 | 11:33 | 11:22 | 12:93 | 13:78 | *** | 17.22
12.25F | 11:18 | 13:33 | 篇 | - | 26 | | 27 | 12:26 | 11:38 | 12:09 | 11:88 | 19:98 | 19:38 | ## | 16.90
12.458 | 19:13 | 12:39 | # | 12:23 | 27 | | 20 | 13.45 | 11:33 | 11:33 | 15:18 | 11:11 | 19:29 | # | 15:78 | H:H | 11:23 | = |
12:31 | 28 | | 29 | 12:13 | 11:22 | 13:32 | 17:22 | | 15:23 | ** | 14:18. | 11:22 | 11:13 | | 13:33 | 29 | | 30 | 14:10 | 11:57 | 11:33 | 12:28 | | 11:13 | int
int | 15:32 | 12:57 | 19:83 | 17.46E | 19:32 | 30 | | 34 | 12:83 | | 13:32 | 17:38. | | 19:33 | | 16.41
13.70s | | 11:73 | - 12 | | 1 3r | | MA X PARLIN | 17:00 | 11:87 | 17:87 | 17:22 | 11:33 | 11:23° | 17:28 | 17:53 | 17:13 | 17:33 | 17.46E
HR | 7,60E
FIR | | | 101100,00 | | | | | | | | | | | | | | on feet In order to machine process the data in this table, it was necessar" to avoid negative gage heights. Subtract 10,00 feet to obtain recorder gage height. | | LOCATION | 1 | | MAXIMUM | | PERIOD C | F RECORD | | DATUM | OF GAGE | | |-----------|------------|------------------|--------|-----------|--------|------------|--------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD |) | DISCHARGE | GAGE HEIGHT | PER | 0018 | ZERO | REF | | LATITUDE | LONGITUDE | м 0.В в.м | C.F.S. | GAGE HT. | OATE | DIS CHARGE | ONLY | FROM | TO | GAGE | DATUM | | 38°04'25" | 121°51'18" | SW27 3N 1E | | 9,2 | 4/6/58 | | June 29-Date | 1929 | | 0,00 | USED | | 1 | | • | | | ' | ' | | 1929 | | -3,05 | uscas | | | | | | | | | | | | | | Station located 0,4 mi. SW of Collinaville, 3.3 mi. NE of Pittaburg. Maximum gage height does not indicate maximum discharge. E - Estimated NR- No Record TABLE B-1 DAILY MAXIMUM AND MINIMUM TIDES SUISUN BAY AT BENICIA ARSENAL in feet STATION NO WATER YEAR E03300 1963 | | | | | | | | | | | | | | _ | |----------|----------------|----------------|-----------------|----------------|---------------|---------------|---------------|-------------------|---------------|---------------|---------------|---------------|-------| | DA7E | DCT. | NOV | OEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OATE | | 1 | 12:86 | 19:31 | 12.47 | 14:31 | 14.20
9.13 | 12:39 | 12:87 | 12.39 | 12.99
8.96 | 13.20 | 13.56 | 13.49
7.65 | | | 2 | 13.04 | 12.60
7.50 | 12.70 | 12.71
8.91 | 13.87
8.19 | 13.11 | 12.41
8.94 | 12.70
7.97 | 12.99
8.46 | 13.32
7.99 | 13.63 | 13.57
7.58 | 2 | | 3 | 12.95 | 12.57
10.52 | 12.22
7.16 | 13.06
7.79 | 14.39
6.09 | 12.90
7.00 | 12.24 | 12.17
8.15 | 13:01
7:82 | 13.45
7.66 | 13:70 | 12.66
7.81 | 3 | | 4 | 12.87
8.10 | 12.38
7.53 | 12.36
9.52 | 13.27
6.00 | 14.57
7.89 | 12.44 | 12.26
7.10 | 12.90 | 13.23
7.60 | 13.55 | 12.29 | 13:67 | 4 | | 5 | 12.79 | 12.25
7.32 | 12.45
7.29 | 13.46
7.65 | 14.41
7.56 | 12.67
6.47 | 12.71 | 13.08 | 13.49
7.49 | 12.07 | 13.66
7.36 | 13.51 | 5 | | 6 | 12.72 | 12.39 | 12.66 | 13.62
7.39 | 14.36
7.40 | 13.02
6.78 | 12.94 | 12.93 | 12.43
7.30 | 13.70
7.22 | 13.66
7.38 | 13.23
8.15 | 6 | | 7 | 12.94
7.78 | 12.57
7.37 | 13.13 | MR
MR | 14.90
7.50 | 13.16
6.91 | 13.13 | 19.10
7.80 | 13.76 | 13:77
7:15 | 13.52
7.51 | 13.39 | 7 | | 8 | 12.67 | 12.98 | 13.47 | NA
NR | 14.40 | 13.16
7.21 | 13.11 | 13.28
7.55 | 13.84
7.24 | 13.70
7.03 | 13.24
7.68 | 13.93 | 0 | | 9 | 12.88
7.54 | 13.49
8.17 | 13.73
7.21E | MR
MR | 14.91 | 13.08
7.40 | 13.20
7.90 | 13.19
7.18 | 13.77 | 13.50
7.13 | 12.97
7.45 | 13.96
9.44 | 9 | | 10 | 12.99 | 13.62
7.60 | 13.89E
7.10E | NR
NB | 14.30 | 12.87
7.45 | 15.27 | 18.01
7.13 | 14.05 | 13.29
7.23 | 13.20
8.19 | 13.44
6.06 | 10 | | 0 | 13-68 | 13.72 | 14.00
7.198 | NR
NR | 13.91 | 12.60
7.64 | 13.23 | 13:10 | 13:62 | 13:31 | 13.39 | 13.49
7.94 | 0 | | 12 | 14.09 | 13.99
7.31 | 13.63E
7.17E | RPR
NR | 13.14 | 12.30 | 13.33 | 12.49 | 13.36
7.63 | 13.09 | 13.42 | 13.38
7.80 | 12 | | 13 | 14.25
9.06 | 13.91
7.34 | 13.68 | NR
NR | 12.92
9.23 | 12.30
7.91 | 13.28 | 12.81
7.20 | 12.97 | 13.29
4.19 | 13.52 | 13.46
7.67 | 13 | | 14 | 14.14
7.98 | 13.79
7.19 | 13.50
7.31E | NR
NR | 12.79
9.55 | 12.50
8.26 | 13.44 | 12.55
7.38 | 12.99 | 13.62 | 13.65 | 13.60 | 14 | | 15 | 14.07
7.77 | 13.29
7.22 | 12.95E
7.48E | MR
MR | 12.51
9.35 | 12.70 | 12.91
6.10 | 12.33
7.37 | 13.31 | 13.84 | 13.85
7.41 | 13.62
7.87 | 15 | | 16 | 14.06
7.53 | 12.71 | 12.44E
7.61E | MR
MR | 12.71
9.21 | 13.05 | 12.53
8.40 | 12.38
7.50 | 13.71
8.47 | 13.91
8.15 | 14:01
7:51 | 13.48 | 16 | | 17 | 14.07
7.66 | 12.21
9.95 | 12.11E | NR
NR | 12.70 | 12.79 | 12.59 | 12.80
7.75 | 14.02
8.37 | 13.98
7.96 | 12.50
7.56 | 13.00 | 17 | | 16 | 13.89 | 12.10
7.22 | 13.02 | NR
NR | 12.71
8.01 | 12.09
7.49 | 13.07
7.90 | 13:21 | 12.45
7.98 | 14.13
7.29 | 13.86 | 13.35 | 18 | | 19 | 13.40 | 12.07 | 12.69
8.39 | 12.50 | 12.89
7.51 | 12.05
7.32 | 13:15 | 13.67 | 14:20 | 12:37 | 13.56 | 13.09 | 19 | | 20 | 12.77
7.86 | 12.26
7.55 | 12.71 | 12.58
7.48 | 13.14
7.09 | 12.22 | 13.27 | 13.96 | 14:42
7:31 | 14.12
7.02 | 13.39 | MR
MR | 20 | | 21 | 12.94 | 12.55
7.96 | 12.76 | 12.99 | 13.28 | 12.66
7.17 | 13:51 | 12.71
7.59 | 14.51 | 14:01
7:01 | 13.17 | NR
NR | 21 | | 22 | 12.98 | 12.44
8.43 | 13.00
7.88 | 13.14 | 13.45 | 13.39 | 13:96 | 14.10 | 14:31
4:73 | 13.91
7.16 | 13.04
0.38 | MR
MR | 22 | | 23 | 12.74 | 13.09 | 13.32E | 13.30
7.05 | 13.54 | 13.34
7.18 | 13.75 | 14.34 | 14.09
6.71 | 13.63
7.48 | 12.83
8.49 | MR
NR | 23 | | 24 | 12.78 | 12.95 | 13.44
7.41 | 13.55 | 13.92 | 12.97 | 14:10
7:13 | 14.40 | 13.70
6.72 | 13:16 | 12.75 | MR
MR | 24 | | 25 | 12.60 | 12.96 | 13.93
7.12 | 13.39 | 13.34 | 12.67 | 14.46
7.26 | 14.22 | 13.21 | 12.62
7.62 | 12.70
9.12 | NR
NR | 25 | | 26 | 12.86 | 13.35 | 13.62 | 13.93 | 12.99 | 13.05 | 14.45 | 13.48 | 12:90 | 12.05 | 18:78 | MR
MR | 26 | | 27 | 12.74
7.77 | 13:16 | 13.58 | 13:33 | 13.03 | 13.46 | 13.69 | 13.58
5.89 | 12:02 | 13:13 | 12:71 | MR
NR | 27 | | 28 | 12.73E
7.66 | 13.11 | 13.43 | 13.16
7.28 | 13.04
7.58 | 14.08
7.77 | 13.37 | 13 - 24
7 - 46 | 12.03 | 13.20 | 12.95
8.36 | HR | 28 | | 29 | 12.97 | 12.96
6.66 | 13.17 | 12.46
8.36 | | 13.77 | 12.92
7.00 | 12.75 | 12:82
8:57 | 13.19 | 13.27
0.19 | NR
NR | 29 | | 30 | 13:05 | 13.00 | 13.01 | 13.69 | | 13.92
7.16 | 12.50 | 12.83 | 12.96 | 13.28
8.61 | 13.34 | NR
NR | 30 | | 31 | 12.96 | | 17:63 | 14.29
10.60 | | 13.25 | | 13.00 | | 13.41 | 13.44
7.80 | | 31 | | MAX IMUM | 14.23E | 13:22 | 16.00 | 14.25 | 14.99 | 14.06 | 14.46 | 14.40 | 14.51 | 14:13 | 14:91 | 13.67
7.58 | 27.00 | | MINIMUM | 7.44 | | 0,00 | | 0.73 | | | | | 1.01 | | | | ^{*} In order to machine process the data in this table, it was necessary to avoid negative gage heights. Subtract 10.00 feet to obtain recorder gage height. | | LOCATION | 1 | | MAXIMUM | | PERIOD (| F RECORD | | DATUM | OF GAGE | | |-----------|------------|------------------|--------|-----------|--------|-----------|------------------------------|----------------------|--------------|------------------------|-------------------------| | | | 1/4 SEC. T. & R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | RIOD | ZERO | REF | | LATITUDE | LONGITUDE | M. D. B. 8 M. | C.F.S. | GAGE HT. | OATE | | ONLY | FROM | TO | GAGE | DATUM | | 38°02'26" | 122°08'44" | SW6 2N 2W | | 6.72 | 3/5/62 | | Jun 29-Apr 40
Apr 40-Date | 1929
1940
1942 | 1940
1942 | -2.21
-5.00
0.00 | USCGS
USCGS
USCGS | Station located on inshore side of wharf, immediately SE of Senicia. Maximum gage height listed does not indicate maximum discharge. Period of record intermittent from 1929-1940. E - Estimated NR- No Record ### TABLE B-2 IN SECOND FEET ### DAILY MEAN DISCHARGE ARROYO DE LOS COCHES NEAR MILPITAS STATION NO WATER YEAR E64050 1963 STATION NO | OAY | OCT | NOV | OEC | JAN | FEB | MAR | APR | MAY | JUNE | JULY | AUG | SEPT | OAY | |--------|------|------|------|------|-------|-------|-------|-------|-------|------|------|------|------| | - | 0.0 | 0.0 | 0.0 | 0.0 | 0.4* | 0.0 | 0.3 | 0.10 | 0.1 | 0.0 | 0.00 | 0.0 | 1 | | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 2 | | 3 | 0.0* | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 3 | | 4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1* | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 4 | | 3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0+1 | 0.0 | 0.1 | 0+1 | 0.0 | 0.0 | 0.0 | - 5 | | 6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 0.1 | 1.1 | 0.1 | 0.1* | 0.0 | 0.0 | 0.0 | 6 | | 7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.5 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 7 | | 8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0 + 1 | 0.1 | 0.0 | 0.0 | 0.0 | 8 | | 9 | 0.0 | 0.0 | 0.0 | 0.0 | 0 + 1 | 0.1 | 0 • 2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 9 | | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0 • 2 | 0 • 1 | 0 • 1 | 0+2 | 0.1 | 0.0 | 0.0 | 0.0 | 10 | | 11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.14 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | -11 | | 12 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.1 | 0.1 | 0+1 | 0.00 | 0.0 | 0.0 | 12 | | 13 | 0.0 | 0.0 | 0.0 | 0.0 | 2.4 | 0.0 | 0.2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 13 | | 10 | 0.00 | 0.0 | 0.0 | 0.0 | 0.5 | 0.1 | 1.8 | 0.1 | 0.1 | 0.0 | 0.0 | 0+0 | 14 | | 15 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | 1.2 | 0.1 | 0 • 1 | 0.0 | 0.0 | 0.0 | 15 | | 16 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0+4 | 0+3 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 16 | | 17 | 0.0 | 0.0 | 0.0 | 0.0 | 0 • 1 | 0.1 | 0 • 2 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 17 | | 18 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 18 | | 19 | 0.0 | 0.0 | 0.0* | 0.0 | 0.0* | 0.0 | 0.9 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 19 | | 20 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 1.6 | 0+1 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | | 21 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 2 1 | | 22 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.3 | 0.1 | 0.0 | 0.0 | 0.00 | | 2 2 | | 23 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.1
 0.0 | 0.0 | 0.0 | 0.0 | 23 | | 24 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.3 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 24 | | 2.5 | 0.0 | 0.0* | 0.0* | 0.0 | 0.0 | 0.2 | 0.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 25 | | 2.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 5.6 | | 27 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 27 | | 2.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0* | 1.9 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | | 29 | 0.0 | 0.0 | 0.0 | 0.0* | | 0.6 | 0 • 2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | | | 30 | 0.0 | 0.0 | 0.0 | 0.1* | | 0.5 | 0.1 | 0.1 | 0.0 | 0.00 | 0.0 | 0.0 | 31 | | 31 | 0.0* | | 0.0 | 1.0 | | 0+4 | | 0.1 | | 0.0 | 0.0 | | 31 | | MEAN | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.2 | 0.4 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | MEAN | | MAX. | 0.0 | 0.0 | 0.0 | 1.0 | 2.4 | 1.9 | 1.8 | 0 • 2 | 0.1 | 0.0 | 0.0 | 0.0 | MAX | | MIN. | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | MIN. | | AC.FT. | | | | 2 | 11 | 13 | 24 | 6 | 3 | | | | ACF | E - Estimated NR - No Record @ - Orecharge measurement or observation of no flow mode on this day. □ - E ond ★ | | | | , | WAI | ER I | 7 6 | AR | SUM | MARI | | | | | | |-----------|-----------|---------|----|-----|------|-----|---------------|------|------|----|----|-----|------|---| | MEAN | | MAXIMU | | | | 1 | $\overline{}$ | | MIN | | | | | 1 | | DISCHARGE | DISCHARGE | GAGE HT | MO | OAY | TIME | 1 | 01501 | ARGE | GAGE | нТ | MO | DAY | TIME | ı | | 0.1 | 14+0 | 2.67 | 2 | 12 | 2400 | J | | 0.0 | | | 10 | 1 | 0000 | J | | | | | | | | | | | | | | | | | WATER YEAR SUMMARY | TOTAL | | |-----------|--| | ACRE-FEET | | | 60 | | | | LOCATION | ٧ | MAXII | NUM DISCH | IARGE | PERIOD (| F RECORD | | DATUM OF GAGE | | | | |------------|-------------|----------------------------|-------|-----------|---------|--------------|---------------|--------|---------------|------|-------|--| | LATITUDE | LONGITUDE | 1/4 SEC T.B.R
M.D.B.B.M | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PERIDD | | ZERO | REF | | | | | M D B G M | CFS | GAGE HT. | DATE | | ONLY | FROM | TO | GAGE | DATUM | | | 37 36 '38" | 121°51' 45" | NW4 63 1E | 16.7E | 2.71 | 2/14/62 | 9-16-59 Date | Sept. 59 Date | 1959 | | 0.00 | Local | | Station located 200 ft. above Calaveras Road Bridge. 2.6 miles NE of Milpitas. Tributary to Coyote Creek via Penitencia Creek. Recorder installed Sep. 16, 1959. New control installed 7-27-60 with V-notch for small flows. TABLE B-2 DAILY MEAN DISCHARGE BUTANO CREEK IM PESCABENO | STAT 100 00. | RETER | |--------------|-------| | 202200 | 1941 | | báv | OCT | NOA | DEC. | JAN | PEG. | MAR | APR | MAY | JUNE | JULY | AU6. | BEPL | ONY | |--------|----------------|-------------|------------|-------|------------|----------|----------|----------|------------------------|-------------------|------------|---------------------------------|-------| | | 0.88 | 6.2 | 0.2 | 0.1 | 333 • | 25. | 44 | 40 4 | 14 | 6.9 | 2.7 | 3.9
2.0
2.5
2.6
2.9 | 1 | | | 9.00 | 9.4 | 0.4 | 7.9 | 147 | 24 | 40 | 37 | 14 | 4.4 | 3.0 | 2.0 | 2 | | | 9.0 | 9.0 | 1.0 | 7.6 | 107 | 32 | 36 | 24 | 13 | 3.9
3.3
3.1 | 3.8 | 2.8 | 1 : | | | 0.7 | 9.0 | 1.1 | 7.2 | 96 | 21 | 91 4 | 54 | 19 | 3.3 | 3.0 | 2.6 | | | | 0.7 | 4.3 | 1.1 | 6.9 | 75 | 19 | 21 | 32 | 13 | 3.1 | 3.1 | 2.9 | 1 " | | 6 | 9.7 | 3.7 | 1.7 | 6.6 | 47 | 12 4 | 69 | 31
29 | 19 | 4.9 | 2.9
2.7 | 3,3
3,2
3,4
2,2
3,6 | | | 1 | 0.7 | 3.4 | 2.1
2.6 | 0.4 | 54 | 18 | 104 | 29 | 11 4 | 4.9 | 2.7 | 3.2 | 1 . | | | 0.9 | 3.4 | 2.6 | 4.0 | 37 | 10 | 46 4 | 29 | 11 | 4.2 | 3.9 | 3.4 | | | | 6.3 | 3.1 | 3.1 | 3.8 | 124 | 17 | 34 | 75 | 11 | 4.1 | 3.0 | 3.2 | | | 10 | 2.5 | 2.6 | 3.1 | 3.6 | 209 | 17 | 32 | 24 | 11
10 | 4.0 | 3.0 | 3.0 | 10 | | n. | 4.1 | 2.3 | 4.9 | 3.4 | 110 | 17 4 | 27 | 26 | 9.4
9.1
9.3 | 3.9 | 2.4 | 3.2
3.7
3.6
3.4
3.3 | 0 | | 102 | 2.5 | 2.3 | 5.4 | 3.4 | 109 | 1.7 | 26 | 23 | 9.1 | 3.4 | 3.6 | 3.7 | 12 | | 18 | 405 | 2.1 | 7.7 | 3.4 | 223 | 17 | 26 | 20 | 9.3 | 3.1 | 3.7 | 3.4 | 13 | | 14 | 241 0 | 1.0 | 8.9 | 3.4 | 196 | 17 | 96 | 20 | 10 | 3.4 | 3.3 | 3.4 | 14 | | 18 | 43 0 | 1.0 | 30 | 3.4 | 103 | 17 | 107 | 19 | 11 | 3.4
4.3 | 3.2 | 3.3 | 18 | | 16 | | | | | 87 | | | | 11 | 4.4 | 3.1 | | 16 | | 17 | 93
23 | 1.4 | | 9.4 | | 35
22 | 81 | 10 4 | ** | 4.0 | 2.4 | 3.3 | 17 | | io l | 23 | 1.6 | 134 | 9.4 | 79 | 10 | 94 | 10 | 11
10
9.7
9.3 | 3.9 | 3.4 | 2.8
3.2
3.4
2.0
3.6 | 10 | | 19 | 19
16
14 | 5.4 | 90 | 9.4 | 64 | 17 | 97
99 | 17
17 | ** | 3.9 | 3.3 | 2.0 | 19 | | 80 | 16 | 1.2 | 93 | 9.0 | 54
40 • | 1 17 | 1 2 | ií | 1 14 | 8.7 | 3.2 | 3.4 | 20 | | | 14 | 1.1 | 41 | 3.0 | | 1 47 | - | | 707 | *** | 700 | | 1 | | 61 | 25 | 1.1 | 34 | 9.8 | 43 | 16 | 79 | 16 | 9.1 | 3.4 | 2.4 | 2.1
3.4
3.3
9.2
3.3 | 51 | | 10 | 13 | 0.9 | 22 | 4.9 | 39 | 19 | 46 | 19 | 0.4 | 2.2 | 3.4 | 3.4 | 22 | | 8.5 | ii | 9.7 | 32 | 4.3 | 36 | 23 | 61 | 19 | 7.7 | 3.1 | 3.4 | 1.3 | 114 | | 84 | 9.7 | 0.8 | 31 | 4.3 | 33 | 10 | 56 | 15 | 7.1 | 2.6 | 3.7 | 9.2 | 20 | | 88 | 9.7 | 0.8 | 91 | 4.3 | 31 | 10 | 99 | 19 | 3,01 | 3.0 | 4.1 | 3.5 | 1 ** | | 20 | 9.3 | | 31 • | 4.3 | 29 | 19 | 9.2 | 19 | 7.9 | 2.0 | 0.1 | 2.9
2.4
2.0
2.9 | 5.0 | | 67 | :: i | 9.3
1.70 | 23 | 4.3 | 27 | 49 | 47 | 19 | 6.2 | 3.0
2.0 | 3.0 | 2.0 | 27 | | 20 | 7.0 | 0.3 | 20 | 4.2 | 1 56 | 100 | 44 | 15 | 9.7 | 2.9 | 2.6 | 2.0 | 20 | | 29 | | 9.2 | 13 | 4.0 | _ | 81 | 96 | 19 | 3.7
3.7 | 2.0 | 3.2 | 2.9 | 2.0 | | 80 | 7.2 | | ii | | | 1 30 | 94 | 150 | 2.6 | 12-0 | 3.0 | 2.2 | 10 | | 31 | 4:8 | 9.2 | 10.2 | 273 + | l | 39
92 | | 13
13 | | 12.9 | 2.0 | | 81 | | 335 | 40,62 | | 29.0 | 44.3 | 97.3 | 29.9 | 94.6 | 22.1 | 9.7 | 3.9 | 3.2 | 3.1 | MEAN | | MAY | 685 | 5.8 | | | 97.3 | 180 | 197 | 40.0 | 14.0 | 6.9 | 4.1 | 9.7 | MAX | | MANUE. | =3 | 6.2 | 134 | 884 | 26.0 | 10.0 | 21.0 | 19.0 | 2.6 | 2.4 | 2.7 | 2.0 | 0019L | | ACFT | 3419 | 8.0 | 0.2 | 4.2 | 26.0 | 1027 | 2266 | 1997 | 570 | 242 | 2.7
190 | 102 | ACFE | | 7 | 2013 | 190 | 1925 | 2725 | 9917 | 1 1077 | 1 2200 | 1721 | 7/9/ | 676 | | 104 | 1 | WATER YEAR SUMMARY MR - No Record Discharge measurement or observed of no flow made on this day. | MEAN | | MAXIMU | | | | Mit Popula | UN | | |--------------------|------------|---------|--------|-------|-----------|------------|--------|-------| | 919CHARGE
28,28 | SO RANDEIO | TH BOAD | 00 B41 | 7100E | DISCHARGE | GAGE HT. | ME DAY | 71000 | | 29,23 | 1940 | 16,21 | 1 31 | 1350 | 0.0 | 3,12 | 6 30 | 9749 | TOTAL ACRE-FEET 20000 | | LOCATION | | MAXI | MUM DISCH | IARGE | PERIOD 0 | F RECORD | | DATUM | OF GAGE | | |-------------|--------------|------------------|--------|----------------------|---------|---------------------------------------|--------------|------|-------|---------|-------| | LATITUDE | LONGITUDE | 1/4 SEC. T. 8 R. | | OF RECORD | | DISCHARGE | GAGE HEIGHT | PER | 100 | ZERD | REF | | LATTIONE | LONGITUDE | M. D. B. 8 M | C.F.S. | C.F.S. GAGE HT. DATE | | O O O O O O O O O O O O O O O O O O O | ONLY | FROM | TO | GAGE | DATUM | | 37° 13' 49" | 122° 21' 51" | SW14 8S 4W | 1340 | 16.21 | 1/31/63 | June 62-Date | June 62-Date | 1962 | | 0.00 | Local | Station located 1.7 mi. SW intersection Peacadero Road and Old Stage Road in Pescadero. Tributary to Pescadero Creek. Recorder iostalled June 22, 1962. APPENDIX C GROUND WATER MEASUREMENT ### GROUND WATER MEASUREMENT This appendix includes two tables. Table C-1 "Description of Selected Wells", provides a description of 213 wells for which ground water level data are presented in Table C-2, "Ground Water Levels at Wells". A description of the items in the tables follows. ### DESCRIPTION OF SELECTED WELLS Table C-1, "Description of Selected Wells", is arranged in region, basin, and well number order. The water pollution control board regions used in this report and shown on Plate 2, "Ground Water Basins or Units in the Central Coastal Area", are geographic areas defined in Section 13040 of the Water Code. The regions, ground water basins, or units and subareas are listed by a numbering system as follows: ### State Well Number The state well numbering system used in this report is based on the township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations made by the Department of Water Resources. In this report, the number of a well, assigned in accordance with this system, is referred to as the State Well Number. Under the system each section is divided into 40-acre tracts lettered as follows: | D | С | В | A | |---|---|---|---| | Е | F | G | Н | | М | L | K | J | | N | P | Q | R | Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16N/12W-17K,M would be in Township 16 North, Range 12 West, Section 17, Mount Diablo Base and Meridian and would be further designated as the first well assigned a State Well Number in Tract K. ### Agency Well Number The agency well number is the number assigned to a well by any agency other than the Department of Water Resources in accordance with the numbering system used by that agency. Agencies that use the state well numbering system normally coordinate assignment of well numbers with the Department. These numbers, when common, are not shown in the "Agency Well Number" column; when different, the last five digits are shown in the "Agency Well Number" column. ### Agency Supplying Data Each number in this column is the code number for a cooperating agency. The agency code consists of a five digit number, the first of which is a region number. Thus, 32100 refers to Agency 2100 in Region 3. Because of the limitations of punch-card space, the agency code has been shown as a four digit number without the region number. Therefore, the four digit agency code should always be referred to the region in which the well is located. The
first digit of the four digit agency code, as listed below, designates the type of well numbering system used by the agency. | Code | Well Numbering System | |------|--| | 1 | Location numbers | | 2 | Monterey County Flood Control and Water Conservation | | | District or Santa Clara Valley Water Conservation District | | 3 | Serial numbers | | 4 | Local numbers | | 5 | State or U. S. Geological Survey | | 6 | U. S. Bureau of Reclamation | | 7 | South San Joaquin Irrigation District | The last three digits of the agency code, as listed below, are numbers that designate, within specified limits, the type of agency from which the data were obtained. | Code | Type of Agency | |---------|--| | 000-049 | Federal | | 050-099 | State | | 100-199 | County | | 200-399 | Municipal | | 400-699 | District - Water, Irrigation, Conservation, etc. | | 700-999 | Private | The agencies and code numbers assigned to them in each of the regions are listed in the following tabulation: | Agency Code : | Agency | |-----------------------------|--| | | North Coastal Region | | 5000 | U. S. Geological Survey | | 5050 | Department of Water Resources | | | San Francisco Bay Region | | 2400 | Santa Clara Valley Water Conservation District | | 5000 | U. S. Geological Survey | | 5050 | Department of Water Resources | | 5100 | Alameda County Flood Control and Water Conservation
District | | 5101 | Napa County | | 5109 | Solano County | | 5401 | Alameda County Water District | | | Central Coastal Region | | 2100 and
5100 <u>1</u> / | Monterey County Flood Control and Water Conservation
District | | 2400 | Santa Clara Valley Water Conservation District | | 5050 | Department of Water Resources | | 5101 | San Benito County | | 5102 | Santa Cruz County | | 5400 | South Santa Clara Valley Water Conservation District | $[\]underline{1}/$ In the Paso Robles subbasin of Salinas Valley (3-4.06), this agency number refers to the San Luis Obispo County Flood Control and Water Conservation District. ### Well Use The well use is indicated as follows: | Code | Well Use | |------|-------------------------| | 1 | Domestic | | 2 | Irrigation | | 3 | Municipal | | 4 | Industrial | | 5 | Injection | | 6 | Drainage | | 7 | Domestic and Irrigation | | 8 | Test | | 9 | Stock | | 0 | Unused | ### Well Depth in Feet Well depths shown were reported by the owner, obtained from a driller's log, or measured at the time of the well canvass. ### Data Available Under this heading, code numbers, as listed below, indicate the type of data that are available with respect to well logs, water analyses, and production records. | <u>Data</u> | Code | |---|------| | Log record | | | Log | 1 | | Confidential log
(Sec. 7076, Water Code) | 2 | Water Analyses Mineral | Data | Code | |----------------------|------| | Water Analyses | | | Sanitary | 2 | | Heavy Metals | 3 | | Mineral and Sanitary | 4 | | Production record | | | Available | 1 | | Pump test available | 2 | ### Record Begins and Record Ends The last two digits of the year the record began or ended are shown. ### GROUND WATER LEVELS AT WELLS Table C-2, "Ground Water Levels at Wells", is arranged in region, basin, well number, and date order. It includes measurements of depths to water in wells made from July 1, 1962 through June 30, 1963. Table headings discussed below are only those that were not discussed under "Description of Selected Wells". ### Ground Surface Elevation in Feet The numbers in this column give the elevation in feet above mean sea level (USC&GS datum) of the ground surface from which depth to water is measured. Elevations of ground surface are usually taken from topographic maps and the accuracy is controlled by topographic standards. ### Date The date shown in the column is the date on which the depth measurement, shown in the next column, was made. ### Ground Surface to Water Surface in Feet This is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk which indicates a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump operating, (c) casing leaking or wet, (d) well pumped recently, (e) air gauge measurement, or, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained from the Department of Water Resources. Other symbols used are: Measurement discontinued # Well destroyed @ No measurement for other reasons ### Water Surface Elevation in Feet This is the elevation in feet above mean sea level (USC&GS datum) of the water surface in the well. It was derived by subtraction of the depth measurement from the ground surface elevation. The words FLOW and DRY are shown in this column to indicate a flowing or a dry well. ### Agency Supplying Data Each number in this column is the code number for the agency from which the water level data were obtained. TABLE C-1 | | | | | 5 | STEED WELLS | • | | | | |-------------------------|-----------------------|--|---|---|----------------------------|--------------------|---|--|------------------------------------| | STATE
WELL
NUMBER | AGENCY WELL
NUMBER | ATAO ATENCE ATAO ATAO ATAO ATAO ATAO ATAO ATAO ATA | MEET OF THE STATE | PROD. F
RECORD
BEGINS
RECORD
RECORD | STATE
WELL
NUMBER | AGENCY WELL NUMBER | AGENCY
SUPPLYING
ATAO
WELL
JUSE | WELL DEPTH IN FEET IN PRECE AVAILABLE
AVAILABL | ENDS
BECORD
BECORD
BECORD | | | | | | | | | | | | | NORTH CD | NORTH CDASTAL REGION | | | | | | | | | | POTTER VALLEY | | | 1-14.00 | | SANTA ROSA AREA | | | 1-18.01 | | | 17N/11W-18J01 M | | 5000 1 | 35 | 51 | 7N/09W-35D02 M | | 5050 1 | 167 | 20 | | 17N/11W-32J01 M | | 5000 1 | 12 | 51 | 8N/09W-36N01 M | | 0 000 9 | 89 | 64 | | UKIAH VALLEY | | | 1-15.00 | | HEALDSBURG AREA | | | 1-18.02 | | | 15N/12W-08L01 M | | 5000 1 | 62 | 51 | 8N/09W-03P01 M | | 5000 1 | 110 | 20 | | 15N/12W-21M01 M | | 5000 7 | 97 | 51 | 8N/09W-22L01 M | | 5000 1 | 77 | 5 1 | | 15N/12W-35M01 M | | 5000 2 | 190 | 51 | 9N/09W-28N01 M | | 5 000 5 | 53 | 53 | | HOPLAND VALLEY | | | 1-16.00 | | 10N/10W-35Q01 M | | 0 0005 | 285 | 54 | | 13N/11W-18E01 M | | 5 000 7 | 52 | 53 | LOWER RUSSIAN RIVER VALLEY | VALLEY | | 1-98.00 | | | 13N/11W-19P01 M | | 5 000 2 | 77 | 53 | 7N/10W-06N01 M 7D | 7001 | 5000 3 | 120 | 5.8 | | 13N/11W-20G01 M | | 5000 1 | 135 | 53 | 7N/11W-14E01 M | | 5000 1 | 47 | 5.1 | | ALEXANDER VALLEY | | | 1-17.00 | | | | | | | | 10N/09W-18B01 M | | 5000 2 | 180 | 90 | | | | | | | 10N/09W-26L02 M | | 5000 1 | 40 | 90 | | | | | | | 10N/09W-33C01 M | 33801 | 5000 1 | 20 | 90 | | | | | | | 11N/10W-08P01 M | | 5000 1 | 30 | 51 | | | | | | | 11N/10W-17P02 M | | 5000 2 | 36 | 53 | | | | | | | 11N/10W-19F02 M | | 5000 1 | 334 | 52 | | | | | | | SANTA ROSA VALLEY | | | 1-18.00 | | | | | | | | SANTA ROSA AREA | EA | | 1-18.01 | | | | | | | | 6N/08W-07P02 M | | 5 000 3 | 120 | 45 | | | | | | | 6N/08W-13R01 M | | 5000 1 | 250 | 42 | | | | | | | 7N/07W-06R01 M | | 5050 7 | 133 | 51 | | | | | | | 5109 9
5109 9
5109 1
5109 2
5000 0
5109 2 | 2 2 3 1 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 2 2 1 2 2 1 2 2 1 | 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 | 1 1 5 5 6 5 1 6 6 | \$109 9
\$109 9
\$109 1
\$109 2
\$109 2
\$109 2
\$109 2
\$109 2
\$100 2
\$100 2
\$100 1
\$100 1
\$100 9
\$401 4
\$100 2 | \$109 9
\$109 9
\$109 1
\$109 1
\$109 2
\$5000 2 2
\$5000 2 2
\$5000 1 2
\$5000 1 2
\$5000 1 2
\$5000 1 1
\$5000 1 1
\$5000 2 1 1
\$5000 1 2 1
\$5000 1 2 1 1
\$5000 1 2 1 1 | |---|--|--|---|--|--
--| | SUISUN-FAIRFIELD VALLEY 5N/OIE-36A01 M 5N/OIW-07E01 M 5N/OIW-17D02 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/OZW-29R01 M | SUISUN-FAIRFIELD VALLEY 5N/O1E-36A01 M 5N/O1W-07E01 M 5N/O2W-17D02 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/O2W-29R01 M 5N/O3W-26F02 M | SUISUN-FAIRFIELD VALLEY 5N/OIE-36A01 M 5N/OIW-07E01 M 5N/OIW-28P01 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/O2W-29R01 M 5N/O3W-26F02 M | SUISUN-FAIRFIELD VALLEY 5N/O1E-36A01 M 5N/O1W-07E01 M 5N/O2W-17D02 M 5N/O2W-27J02 M 5N/O2W-29R01 M 5N/O2W-29R01 M 5N/O3W-26F02 M 5N/O3W-26F02 M 7GNACIO VALLEY 1N/O1W-07K01 M | SUISUN-FAIRFIELD VALLEY 5N/01W-07E01 M 5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/03W-26F02 M 1N/02W-07K01 M 1N/01W-07K01 M 1N/02W-11N01 M | SUISUN-FAIRFIELD VALEY 5N/01E-36A01 M 5N/01W-07E01 M 5N/02W-27002 M 5N/02W-29R01 2N/02W-27R01 M 2N/02W-27R01 M 2N/02W-27R01 M 2N/02W-27R01 M 4S/01W-18601 M 4S/01W-22P05 | SUISUN-FAIRFIELD VALLEY 5 N/01W-07E01 M 5 N/01W-07E01 M 5 N/02W-27J02 M 5 N/02W-27J02 M 5 N/02W-29R01 M 5 N/02W-27R01 M 6 N/02W-27R01 M 7 N/02W-11N01 M 7 N/02W-11N01 M 7 N/02W-11N01 M 7 N/02W-11N01 M 7 N/02W-27R01 M 7 N/02W-27R01 M 7 N/02W-27R02 M 7 N/01W-18G01 M 7 S/01W-29C04 M 7 S/01W-29C04 M 7 S/02W-28C02 M | | SUISUN-FAIRFIELD VA
5N/01E-36A01 M
5N/01W-07E01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-29R01 M
5N/02W-39J01 M | SUISUN-FAIRFIELD VA
5N/OIM-07E01 M
5N/OIW-28P01 M
5N/O2W-17D02 M
5N/O2W-27J02 M
5N/O2W-29R01 M
5N/O3W-26F02 M | SUISUN-FAIRFIELD VA
5N/01W-07601 M
5N/01W-07601 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-29R01 M
5N/02W-30J01 M
5N/03W-26F02 M | SUISUN-FAIRFIELD VA
5N/01E-36A01 M
5N/01W-07E01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-29R01 M
5N/02W-29R01 M
5N/03W-26F02 M
5N/03W-26F02 M
7GNCIO VALLEY | SUISUN-FAIRFIELD VA
5N/OIE-36A01 M
5N/OIW-07E01 M
5N/OZW-17D02 M
5N/OZW-17D02 M
5N/OZW-29R01 M
5N/OZW-29R01 M
5N/OZW-26F02 M
5N/OZW-26F02 M
1N/OZW-11N01 M | SUISUN-FAIRFIELD VA 5 N/01W-07E01 M 5 N/01W-07E01 M 5 N/02W-17D02 M 5 N/02W-27J02 M 5 N/02W-27J02 M 5 N/02W-27J02 M 5 N/02W-27J01 M 5 N/02W-27D01 M 5 N/02W-27D01 M 5 N/02W-27D01 M 5 N/02W-27R01 M 2 N/02W-27R01 M 4 S/01W-18G01 M 4 S/01W-12P05 M 4 S/01W-22P05 M 4 S/01W-22P05 M 4 S/01W-22P05 M 4 S/01W-22P06 M 4 S/01W-22P06 M 6 S/01W-22P06 M 6 S/01W-22P06 M 6 S/01W-22P06 M | SUISUN-FAIRFIELD VA
5N/OIE-36A01 M
5N/OIM-28P01 M
5N/OZW-17D02 M
5N/OZW-29R01 M
5N/OZW-29R01 M
5N/OZW-29R01 M
5N/OZW-29R01 M
5N/OZW-29R01 M
5N/OZW-36E02 M
7GNACIO VALLEY
1N/OZW-11N01 M
2N/OZW-27R01 M
2N/OZW-27R01 M
2N/OZW-27R01 M
2N/OZW-11N01 M
2N/OZW-136E01 M
2N/OZW-136E01 M
2N/OZW-136E01 M
4S/OIW-29C04 M
4S/OIW-29C04 M
4S/OIW-29C04 M
4S/OIW-29C04 M
4S/OZW-13C02 M | | | | 5N/01E-36A01 M
5N/01W-07E01 M
5N/01W-28P01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-39D01 M
5N/03W-26F02 M
YGNACIO VALLEY | 5N/01E-36A01 M
5N/01W-07E01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-30J01 M
5N/03W-26F02 M
5N/03W-26F02 M
5N/03W-26F02 M | 5N/01E-36A01 M
5N/01W-07E01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-29R01 M
5N/02W-29R01 M
5N/03W-26F02 M
5N/03W-26F02 M
1N/01W-07K01 M
1N/01W-07K01 M | 5 N / O I E - 36 A O I M
5 N / O I W - C B O I M
5 N / O I W - C B P O I M
5 N / O 2 W - 17 D O C M
5 N / O 2 W - 27 J O C M
5 N / O 2 W - 26 F O C M
5 N / O 2 W - 26 F O C M
5 N / O 2 W - 26 F O C M
5 N / O 2 W - 26 F O C M
1 N / O 2 W - 36 E O I M
2 N / O 2 W - 36 E O I M
2 N / O 2 W - 36 E O I M
2 N / O 2 W - 36 E O I M
2 N / O 2 W - 36 E O I M
3 S / O 2 W - 24 O C C M
4 S / O I W - 22 P O S M
4 S / O I W - 22 P O S M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M
4 S / O I W - 29 C O C M | 5N/01E-36A01 M
5N/01W-07E01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-29R01 M
5N/02W-29R01 M
5N/02W-29R01 M
5N/02W-26F02 M
5N/02W-26F02 M
5N/02W-26F02 M
5N/02W-26F02 M
5N/02W-26F02 M
5N/02W-26F02 M
2N/02W-26F02 M
2N/02W-26F03 M
2N/02W-26F01 M
2N/02W-27R01 M
2N/02W-27R01 M
4S/01W-29C04 M
4S/01W-29C04 M
4S/01W-29C04 M
4S/01W-29C04 M
4S/01W-29C02 M
4S/01W-29C02 M | | | | 5N/01W-07E01 M
5N/02W-17D02 M
5N/02W-17D02 M
5N/02W-29R01 M
5N/02W-39J01 M
5N/03W-26F02 M
5N/03W-26F02 M | 5N/01W-07E01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-29R01 M
5N/02W-30J01 M
5N/03W-26F02 M
9N/03W-26F02 M
1N/01W-07K01 M | 5N/01W-07E01 M 5N/02W-17D02 M 5N/02W-27U02 M 5N/02W-29R01 M 5N/03W-26F02 M 5N/03W-26F02 M VGNACIO VALLEY IN/01W-07K01 M IN/02W-11N01 M | 5N/01W-07E01 M
5N/02W-28P01 M
5N/02W-27J02 M
5N/02W-29R01 M
5N/02W-29R01 M
5N/02W-29R01 M
5N/02W-29R01 M
5N/02W-27R01 M
1N/02W-11N01 M
2N/02W-27R01 M
2N/02W-27R01 M
2N/02W-27R01 M
3N/02W-24002 M
4S/01W-28P05 M
4S/01W-28P05 M
4S/01W-29C04 M
4S/01W-29C04 M
4S/02W-13C02 M | 5 N / O1W - O7 E01 M 5 N / O1W - 28 P 0 1 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 J 0 2 M 5 N / O2W - 27 P 0 1 M 5 N / O2W - 11 N 0 1 M 1 N / O2W - 11 N 0 1 M 2 N / O2W - 27 P 0 1 M 2 N / O2W - 27 P 0 1 M 2 N / O2W - 27 P 0 1 M 2 N / O2W - 27 P 0 1 M 4 S / O1W - 27 P 0 2 M 4 S / O1W - 27 P 0 2 M 4 S / O1W - 27 P 0 2 M 4 S / O1W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M 4 S / O2W - 27 P 0 2 M | | | | 5N/O2W-28PO1 M
5N/O2W-27JO2 M
5N/O2W-27JO2 M
5N/O2W-39RO1 M
5N/O3W-26FO2 M
YGNACIO VALLEY | 5N/01W-28P01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-39C01 M
5N/03W-26F02 M
5N/03W-26F02 M
7GNACIO VALLEY | 5N/01W-28P01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-30J01 M
5N/02W-30J01 M
5N/03W-26F02 M
YGNACIO VALLEY
1N/01W-07K01 M | 5N/01W-28P01 M 5N/02W-17D02 M 5N/02W-27J02 M 5N/02W-29R01 M 5N/02W-29R01 M 5N/03W-26F02 M 7GNACIO VALLEY 1N/01W-07K01 M 2N/02W-27R01 M 2N/02W-27R01 M 2N/02W-27R01 M 3N/02W-27R01 M 4S/01W-22P05 | 5N/01W-28P01 M
5N/02W-17D02 M
5N/02W-27J02 M
5N/02W-29R01 M
5N/02W-29R01 M
5N/03W-26F02 M
YGNACIO VALLEY
1N/01W-07K01 M
1N/02W-11N01 M
2N/02W-27R01 M
2N/02W-27R01 M
2N/02W-27R01 M
5ANTA CLARA VALLEY
SOUTH ALAMEDA COUNTY UPR AOUIF
35/03W-24002 M
45/01W-29C04 M
45/01W-29C04 M
45/02W-23C02 M
45/02W-23C02 M | | X X X X | ΣΣΣΣΣ | ΣΣΣΣ | * * * * * * | × × × × × × × | A A A A A A A A A A A A A A A A A A A | M M M M M M M M M M M M M M M M M M M | | ΣΣΣ | ΣΣΣΣ | Y Y Y Y Y | . | X | M M M M M M M M M M M M M M M M M M M | A M M M M M M M M M M M M M M M M M M M | | M 5109 | м 5109
м 5000 | 5109
M M 5 | 5 109
5 5000
5 5000 | M M 5000 5000 M M M 5050 M M M S050 M M M M M M M M M M M M M M M M M M | M 5109 M 7 5000 M 8 6000 M 9 | M M S S S S S S S S S S S S S S S S S S | | W 5000 | M 5000 | M 5000 | M M M M 5000 | M M M M M M M M M M M M M M M M M M M | M 5000 M 5000 M 5000 M 6000 M 7 | M 5000 M M 5000 M M 6000 M M 6000 M M 6000 | | | M 5109 | 5109 | M 5050 | × × × × × × × × × × × × × × × × × × × | M 5109 M 7 5050 M 8 60000 M 9 6000 | M 5009 M 7 5000 M 8 5000 M 9 5000 M 9 5000 M 9 5000 M 9 6000 M 9 6000 M 9 6000 M 9 6000 | | × × × × × × × × × × × × × × × × × × × | 5050 1
M 5050 1
M 5050 1 | M 5050 1 | M 5050 | | COUNTY UPR ADUIFER 5100 1 5100 9 5401 4 1 5401 2 1 5401 2 1 | COUNTY UPR ADUIFER
5100 1
5100 9
5401 4 1
5401 0 1
5401 2 1 | | X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5050 1
5050
1
5050 1
5050 1 | 5050 1 2 5050 1 3 505 | M 5050 1 | M 5050 1 | M 5401 0 1 5 100 1 W 5 100 5 100 1 W 7 100 1 W 7 100 2 W 7 100 1 | MEDA COUNTY UPR ADUIFER M 5100 1 M 5401 4 1 M 5401 0 1 M 5401 2 1 M 5100 2 1 | | M 5050
M 5050
M 5050
M 5050 | 5050 1
5050 1
5050 1
5050 1 | 5050 1
5050 1 1
5050 1 | 5050 1 1 5050 1 | 5050 1 | 5100 1
5100 9
5100 9
5100 2 1
5100 2 1
5401 0 1 | 5100 1
5100 9
5401 0 1
5401 0 1
5401 0 1
5401 0 1 | | M 5050
M 5050
M 5050
LLEY
EDA COUNTY UPR AQUIFER | 5050 1
5050 1
5050 1 1
5050 1
COUNTY UPR ADUIFER | 5050 1
5050 1 1
5050 1 | 5050 1 1 5050 1 COUNTY UPR ADUIFER | 5050 1
COUNTY UPR ADUIFER | 5100 9
5401 4
5401 0
5401 0 | 5100 9 5401 4 5401 6 5401 0 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 | | M 5050
M 5050
M 5050
LLEY
EDA COUNTY UPR ADUIFER
M 5100 | \$050 1
\$050 1
\$050 1 1
\$050 1
\$050 1
\$100 1 | 5050 1 5050 1 1 1 2050 1 1 1 2050 1 5 | 5050 1 1 2050 1 COUNTY UPR ADUIFER 5100 1 | 5050 1
COUNTY UPR ADUIFER
5100 1 | M 5401 4
M 5100 2
M 5401 0
M 5401 2 | 5401 4
5100 2
7 5401 0
7 5401 2
8 5401 2 | | M 5050
M 5050
M 5050
M 5100
M 5100 | 5050 1
5050 1
5050 1
5050 1
5100 1 | 5050 1 2050 1 1 5050 1 1 5050 1 1 5050 1 1 5050 1 1 1 5100 1 5100 9 | 5050 1 1 200NTY UPR ADUIFER 5100 9 | 5050 1
COUNTY UPR ADUIFER
5100 1 | M 5401 0
M 5401 0 | 5401 2
5401 2
5401 2 | | M 5050 M 5050 M 5050 M 5050 M 5050 M 5100 M 5100 M 5100 | 5050 1
5050 1
5050 1
5050 1
5000 1
5100 1
5401 4 1 | 5050 1 5050 1 1 5050 1 1 5050 1 1 5050 1 1 1 5050 1 1 1 5100 1 5100 1 5100 9 5401 4 1 1 | 5050 1 1 5050 1 COUNTY UPR ADUIFER 5100 1 5100 9 5401 4 1 | 5050 1
COUNTY UPR ADUIFER
5100 1
5401 4 1 | M 5401 0 | M 5401 0 5401 2 M 5400 2 | | M 5050
M 5050
M 5050
M 5100
M 5100
M 5100 | \$050 1
\$050 1
\$050 1
\$050 1
\$100 1
\$100 9
\$401 4 1 | 5050 1
5050 1 1
5050 1 1
5050 1 5100 1
5100 9
5401 4 1
5100 2 1 | \$050 1 1
\$050 1 5050 1 5050 1 5100 1 5100 9 5401 4 1 5100 2 1 | \$050 1
COUNTY UPR ADUIFER
\$100 1
\$401 4 1
\$100 2 1 | M 5401 2 | M 5401 2
M 5100 2 | | M 5050
M 5050
M 5050
LLEY
EDA COUNTY UPR ADUIFER
M 5100
M 5100
M 5401 | \$050 1
\$050 1
\$050 1
\$050 1
\$100 1
\$100 9
\$401 4 1
\$100 2 | 5050 1 5050 1 1 5050 1 1 5050 1 1 5100 9 5401 4 1 5100 2 1 | 5050 1 1 5050 1 2 5050 1 5050 | 5050 1
COUNTY UPR ADUIFER
5100 9
5401 4 1
5100 2 1 | | M 5100 | | | HT930
1333 NI | | |----------------|-----------------------------|---| | | MECE | | | | METE | | | | AGE NCY
SUPPLYING | | | 2 | AGENCY WELL
NUMBER | | | | | | | | ш.« | | | SELEVIED WELLS | STATE
WELL
NUMBER | | | ו
ר | | | | כ | | | | | ENDS | | | | BECOND | | | 5 | RECORD | | | = | 9 0089 | , | | | DATA
AILABLE
ANAL | 4 | | 5 | 907 | | | DESCRIPTION OF | DEPTH
1333 NI | | | 2 | MELL | | | | MELL.
USE | | | | AGENCY
SUPPLYING
ATAQ | | | | AGENCY WELL
NUMBER | | | | STATE
WELL
NUMBER | | | RECORD
BECORD
BECORD
BECORD
BECORD
BECORD | | | 57 | 3.1 | 55 | 36 | 36 | 36 | 36 | 54 | 36 | 04 | 36 | 36 | 36 | 37 | | 89 | 89 | 8 4 | 64 | 89 | 87 | | | |
--|---|--|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|----------------|---------|-----------|-----| | DEPTH IN FEET AVAILAB | 1 | 2-09.02 | 525 | 007 | 61 | 438 | 800 | 450 | 620 | 350 | 110 | | | 79 | 135 | 114 | 2-10.00 | | 360 | | 303 | 437 1 | 376 | | | | | AGENCY
SUPPLYING
ATAD
ATAD
WELL
JUSE | | | 2400 3 | 2400 | 2400 | 2400 3 | 2400 2 | 2400 2 | 2 400 2 | 2400 | 2400 7 | 2400 | 2400 7 | 2400 | 2400 7 | 2400 | | 5100 | 5 100 2 | 9100 | 5 100 7 | 5 100 2 | 5100 2 | | | | | AGENCY WELL
NUMBER | | CLARA COUNTY | 100 403 | 11D 304 | 12E 398 | 8H 117 | 4H 023A | 3Н 013 | 41 037 | 9Н 166А | 126 257 | 13G 297 | 13F 233 | 81 129 | 15G 238B | 15G 279 | | | | | | | | | | | | STATE
WELL
NUMBER | | NORTH SANTA | 75/02E-07P01 M | 75/02E-17H01 M | 75/02E-33C01 M | 75/01W-35C01 M | 75/02W-03001 M | 75/02W-04B01 M | 75/02W-22A01 M | 85/01E-07H02 M | 85/01E-13H01 M | 85/02E-20F03 M | 85/02E-22001 M | 85/01W-15801 M | 95/02E-01J01 M | 95/02E-01M01 M | LIVERMORE VALLEY | 25/02E-25N01 M | 25/01W-26C01 M | 35/01E-02E01 M | 35/01E-11H01 M | 35/02E-02R01 M | 35/02E-10H01 M | ENDS |] | | | 62 | | | | | | _ | | | | | | | | | | | | | | | | | | MATER AND RECORD | | •01 | 69 | 49 62 | 20 | 64 | 90 | 2 58 | 6 4 | 1 49 | •02 | 36 | 2 51 | 36 | 30 | 58 | 58 | 36 | 30 | 30 | 36 | 36 | 36 | 58 | 36 | 5.0 | | PROD RECORD RECORD RECORD RECORD RECORD | | 2-09-01 | 601 59 | | 218 50 | 511 49 | 475 50 | | 241 49 | | 2-09-02 | 525 36 | 560 2 51 | 295 36 | 250 30 | 410 58 | 425 58 | 36 | 900 30 | 480 30 | 400 36 | 235 36 | 36 | 896 806 | 36 | 400 | | PEECING PEECT HTML AND A PEECING PEECI | | | | | | | | 2 | | 1 | 2-09-02 | | 2 | | | | | 2400 2 36 | | | | | 2400 3 36 | | 2400 2 36 | | | AECL
WELL
WELL
WELL
WELL
WELL
WELL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL
WALL | | SOUTH ALAMEDA COUNTY LWR AQUIFER 2-09.01 | 2 601 | 64 | 0 218 | 7 511 | 2 475 | 7 224 2 | 0 241 | 2 297 1 | CLARA COUNTY 2-09.02 | 0 525 | 2 560 2 | 0 295 | 7 250 | 8 410 | 2 425 | 2 | 1 500 | 2 480 | 7 400 | 235 | 3 | 3 908 | 2 | 400 | | - | ENDS
BECORD
BECINS
BECORD | |--------------------------------|--| | | AVAILABLE WATER WA | | | WELL
0EPTH
IN FEET | | |
350
MELL | | | AGENCY
SUPPLYING
ATAO | | | AGENCY WELL
NUMBER | | מברטונו ווסוא סו סברטובה איברס | STATE
WELL
NUMBER | | | | |) | ENDS | | | BECINS
BECOBO | | | DATA
AVAILABLE
LOG
ATER
ANALIABLE
ANALIABLE
ANALIABLE | | ì | WELL
DEPTH
IN FEET | | | 3SO
MELL | | | ATA0
JJ3W | | | | | DESCR | IPTION OF | DESCRIPTION OF SELECTED WELLS | ELLS | | ı | |-------------------------|-----------------------|--|---------|--|-------------------------------|--------------------------|---|--| | STATE
WELL
NUMBER | AGENCY WELL
NUMBER | AGENCY
SUPPLYING
ATAO
WELL
USE | T334 NI | AVALLABLE ANDS PROD BEGINS BECORD BEGINS BECORD BEGINS BECORD BEGINS BECORD BEGINS BECORD BEGINS BECORD BEC | STATE
WELL
NUMBER | AGENCY WELL
NUMBER | AGENCY SUPPLYING DATA WELL WELL WELL OFFTH TEST | WELL
DEPTH
IN FEET
100 A
MATER
WATER
MANA
10099 | | | | | | | | | | | | HALF MOON BAY TERRACE | 3. | | 2-22.00 | c | CENT | CENTRAL COASTAL REGION | | | | 55/05W-20L01 M | | 0 0505 | 69 | 53 | SOQUEL VALLEY | | | 3-01-00 | | 55/05W-29F03 M | | 5050 1 | | 53 | 115/01W-09L01 | Σ | 5050 0 | | | 55/05W-29N01 M | | 5050 2 | 8.2 | 53 | 115/01W-15H01 | Σ | 0 0505 | | | 65/05W-06B01 M | | 5050 2 | 8.5 | 53 | PAJARO VALLEY | | | 3-02.00 | | SAN GREGORIO VALLEY | | | 2-24.00 | 0 | 125/01E-24G01 | Σ | 5050 2 | 200 | | 75/05W-13E01 M | | 5050 0 | 4.5 | 58 | 12S/02E-16J01 | Σ | 5050 2 | | | 75/05W-15C01 M | | 5050 2 | 8.5 | 5.8 | 125/02E-31K01 | Σ | 5050 2 | 219 | | 75/05W-15E01 M | | 5050 7 | | 53 | 135/02E-05801 M | Σ | 5050 0 | 225 | | 75/05W-15E02 M | | 5050 1 | | 53 | GILROY-HOLLISTER VALLEY | TER VALLEY | | 3-03.00 | | 75/05W-15H02 M | | 5050 1 | | 9 | SOUTH SAM | SOUTH SANTA CLARA COUNTY | | 3-03.01 | | PESCADERO VALLEY | | | 2-26.00 | 0 | 95/03E-27C02 | 95/03E-27C02 M 18G 374 | 2400 7 | 300 | | 85/05W-09H01 M | | 5050 2 | | 53 | 95/03E-29B01 | Σ | 2050 0 | 170 | | 85/05W-11M01 M | | 5050 1 | 36 | 53 | 105/03E-34L01 | Σ | 5050 2 | 1 | | | | | | | 105/04E-18G02 M | ¥ | 5050 7 | 184 | 00 00 4 4 4 7 2 8 8 2 8 8 S 51 63 88 150 77 125/05E-33A01 M 135/05E-11001 M 125/05E-12F01 M 24 37 64 5050 2 5101 2 5050 0 736 1 125 3-03.02 SAN BENITO COUNTY 115/05E-13D01 M 125/04E-20C01 M 115/03E-01801 M 105/04E-35E01 M 4 4 4 6 0 00 8 4 5050 2 5400 2 | | \$0.03
\$M.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03
\$0.03 | | 3-04.06 | 5100 | |---
--|----------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | AGENCY WELL
NUMBER | STATE
WELL
NUMBER | | PASO ROBLES | 245/10E-11C01 M | 245/11E-25N01 M | 245/11E-33R01 M | 245/11E-35J01 M | 245/12E-17N01 M | 245/15E-33C01 M | 255/11E~35G01 M | 255/12E-17J01 M | 255/12E-17R01 M | 255/12E-26K01 M | 255/13E-11E01 M | 255/16E-17L01 M | 255/16E-30M01 M | 265/12E-04N01 M | 265/12E-26E01 M | 265/12E-35M01 M | 265/13E-10D01 M | 265/13E-34801 M | 265/14E-16L01 M | 265/14E-35D01 M | 265/15E-02801 M | 265/15E-28Q02 M | 265/15E-29N01 M | | | ENDS
BECOBO
BECOBO
BECOBO
BECOBO | | | 31 | 16 | 31 | 31 | 31 | 31 | | 31 | 31 | | 16 | | 31 | | 31 | 77 | | 31 | 16 | 16 | 31 | 31 | | | | WELL
OEPTH
IN FEET
LOG
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WATER
WAT | 3-04.00 | 3-04.01 | | 176 | 196 1 | | 279 1 | | 3-04-01 | 500 1 | 513 1 | 3-04.02 | 599 | 3-04-03 | 238 1 | 3-04-04 | 288 1 | 320 | 3-04.05 | 245 | 372 | | | | | | , | AGENCY
SUPPLYING
ATAO
ATAO
BELL
JUSK | | | 2100 2 | 2 100 2 | 2100 7 | 2100 2 | 2 100 2 | 2100 1 | | 2100 2 | 2100 2 | | 2 100 2 | | 2 100 2 | | 2100 2 | 2100 2 | | 2 100 2 | 2100 2 | 2 100 2 | 2 100 2 | 2 100 2 | | | | AGENCY WELL
NUMBER | | A 180 FOOT AGUIFER | 28 001 | 2C 025A | 2D 023 | 30 040 | 4D 056 | 4E 030D | A 400 FOOT AQUIFER | 18 011A | 2C 119 | V pi | 5E 026 | | 6F 017 | CONE | 76 029 | 7H 036 | AREA | 8н 031 | 91 004 | 100 001 | 11K 002 | 12K 003 | | | | STATE
WELL
NUMBER | SALINAS VALLEY | PRESSURE AREA | 145/02E-03C01 M | 145/02E-15L01 M | 155/02E-01001 M | 155/03E-16M01 M | 155/04E-33A01 M | 165/04E-11D01 M | PRESSURE AREA | 13S/02E-31001 M | 145/03E-18J01 M | EAST SIDE AREA | 16S/05E-17R01 M | FOREBAY AREA | 175/05E-11C01 M | ARROYO SECO CONE | 185/06E-15M01 M | 195/06E-11C01 M | UPPER VALLEY | 195/07E-10P01 M | 205/08E-05R01 M | 215/09E-06K01 M | 215/10E-32N01 M | 225/10E-16K01 M | | | WELLS | | |------------|--| | SELECTED W | | | OF SEL | | | NO
E | | | ENDS
BECOND
BECINS
BECOND | | |---|---| | DATA
WATER
ANAL
ANAL
PROD | | | WELL
DEPTH
IN FEET | | | SUPPLYING
DATA
MELL
WELL | | | AGENCY WELL
NUMBER | | | STATE
WELL
NUMBER | | | | _ | | END2
BECOBD
BECIN2
BECOBD | | | DATA
AVAILABLE
WATER
WATER
PROD
PROD
PROD
PROD | | | WELL
OEPTH
IN FEET | | | - | AVAILABLE ASSECTING PRODE PROD | 52 | | 54 | |---
--|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|-----------------|-----------------|-----------------| | | WELL
DEPTH
IN FEET | 3-04.06 | | | | | | | | | | | | | | | | | | 3-07.00 | 09 | 3-26.00 | | | - | AGENCY
SUPPLYING
ATAD
WELL
WELL | | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5 100 | 5100 | 5100 | 5100 | 5100 | 5100 | | 5050 7 | | 5050 2 | | | AGENCY WELL
NUMBER | TERRACE | | | | STATE
WELL
NUMBER | PASO ROBLES | 275/13E-24N01 M | 275/13E-32801 M | 275/15E-10R02 M | 275/15E-13A01 M | 275/16E-21E02 M | 285/12E-10G01 M | 285/12E-10R02 M | 285/12E-13N01 M | 285/12E-14G01 M | 285/13E-04K01 M | 285/13E-04KQ2 M | 285/14E-07E01 M | 285/16E-23M01 M | 295/13E-05F03 M | 295/13E-05K02 M | 295/13E-06A01 M | 295/13E-19H01 M | CARMEL VALLEY | 165/01E-25801 M | WEST SANTA CRUZ | 115/02W-22K01 M | | | | | | | | יייי בייביט היי אר | | | | | | |----------------------|---|---|--|--|-----------------------------|--------------------------------|---|--|---|---|-----------------------------| | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | | | | | | | | | | | | | | | OZ | NORTH COASTAL REGION | EG10N | | | | NOR | NORTH COASTAL REGION | EG10N | | | | | POTTER VALLEY | | | 1-14.00 | | | UKIAH VALLEY | | | 1-15.00 | | | | 17N/11W-18J01 M | 955.0 | 7-23-62
8-20-62
9-18-62
10-25-62
11-26-62
12-20-62
1-21-63 | 11 1 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2000 | 15N/12W-21M01 M
CONT. | 290.0 | 11-15-62
12-04-62
1-03-63
2-13-63
3-06-63
4-17-63 | 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 588 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2000 | | | | 2-18-63
3-19-63
4-23-63
5-20-63 | FLOW
NO. | 955.7 | | 15N/12W-35M01 M | 0.009 | 6-07-63
7-12-62
8-16-62 | 2.7 | 588
- 3 | 2000 | | 17N/11W-32JO1 M | 895*0 | 7-23-62
8-20-62
9-18-62
10-25-62
11-00-62
12-20-62
12-21-63 | | 88888 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0000 | | | 10-01-62
11-03-63
12-04-62
12-04-63
1-03-63
3-04-63
4-17-63
6-07-63 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | 3-19-63
4-23-63
5-20-63
6-18-63 | 1.5
2.3
3.6
3.6 | 893.5
894.3
892.7
891.4 | | HOPLAND VALLEY 13N/11W-18E01 M | 0.064 | 7-12-62 | 1-16.00 | | 5000 | | UKIAH VALLEY | | | 1-15.00 | | | | | 9-07-62 | 12.1 | 6.774 | | | 15N/12W-08L01 W | 0.553 | 7-12-62
8-16-62
9-07-62
10-10-62
11-15-62
12-04-62
1-03-63 | 22 | 644000
644000
644000
644300
644300
644000 | 2000 | | | 11-11-15-17-17-17-17-17-17-17-17-17-17-17-17-17- | 11.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0 | 488 78 87 87 87 87 87 87 87 87 87 87 87 8 | | | 15N/12W-21M01 M | 0.065 | 5-10-63
5-11-63
5-11-63
7-12-62
8-16-62
10-10-62 | 770 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 581.7
57.0
581.7
57.6
57.6
57.6 | 0006 | 13N/11W-19P01 M | 4 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7-12-62
8-16-62
9-07-62
10-10-62
11-15-62
12-04-62
1-03-63 |
18.00
18.00
18.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | 4 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2000 | | | 1 | | | | | | | | | | |---|----------------------|------------------|---|---|---|------------------|---|--|---|---| | AGENCY
SUPPLYING
DATA | | | 2000 | | 2000 | | | 2000 | | 2000 | | WATER
SURFACE
ELEVATION
IN FEET | | | 172.5
171.5
171.3
171.0 | 173°4
174°3
174°3
174°4
178°2
175°4 | 291.9
292.0
292.2
292.2
294.0 | 294.2 | 300.6
296.4
301.6
296.6 | 2882
2882
283.
249.
284.
284. | 287.8
284.7
289.1
285.1 | 336°9
334°4
332°9
340°5 | | GRD SUR
TO WATER
SUR IN FEET | | 1-17.00 | 2.0
8.0
9.0
0.0 | 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 | 13.1
13.0
12.8
12.8
11.0 | 10.8 | 4 8 6 8
4 9 4 4 | 9 • 4
9 • 8
8 • 7
12 • 5 * | 2 · · · · · · · · · · · · · · · · · · · | 9 • 1
11 • 6
13 • 1
5 • 5 | | DATE | EGION | | 7-11-62
8-16-62
9-06-62
10-10-62 | 11-17-10-10-10-10-10-10-10-10-10-10-10-10-10- | 7-11-62
8-16-62
9-07-62
10-10-62 | 12-04-62 | 2-13-63
3-06-63
4-17-63
5-14-63
6-07-63 | 7-11-62
8-16-62
9-07-62
10-10-62
11-15-62
12-04-62
1-03-63 | 2-13-63
3-06-63
4-17-63
5-14-63
6-07-63 | 7-12-62
8-16-62
9-07-62
10-10-62
11-15-62
12-04-62 | | GROUND
SURFACE
ELEVATION
IN FEET | NORTH COASTAL REGION | | 180.0 | | 305.0 | | | 292.0 | | 346.0 | | STATE WELL
NUMBER | NOF | ALEXANDER VALLEY | 10N/09W-33C01 M | | 11N/10W-08P01 M | | | 11N/10W-17P02 M | | 11N/10W-19F02 M | | AGENCY
SUPPLYING
DATA | | | 2000 | 0000 | | | 2000 | | 2000 | | | WATER
SURFACE
ELEVATION
IN FEET | | | 476.7
482.0
478.9
475.9 | 506
502
502
502
502
503
503
6 | 5110.6
510.6
511.1
510.6
509.4 | | 209-8
208-4
210-4 | 212.4
216.6
213.0
217.4
213.2
210.3 | 191•1
187•0
184•3
193•2 | 194.0
200.5
204.1
204.7
204.7 | | GRD SUR
TO WATER
SUR IN FEET | | 1-16.00 | 11.3
6.0
9.1
12.1 | 1122 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - | 0 4 0 4 0
- 4 0 4 0 | 1-17.00 | 20.2
21.6
19.6 | 13.00 | 13.9
18.0
20.7
11.8 | 11
2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | DATE | EGION | | 3-06-63
4-17-63
5-14-63
6-07-63 | 7-12-62
8-16-62
9-07-62
10-10-62
11-15-62
12-04-62 | 2-13-63
3-06-63
4-17-63
5-14-63
6-07-63 | | 7-11-62
8-16-62
9-06-62
10-10-62 | 1-103-163
1-103-163
2-153-163
3-165-163
4-17-163
5-14-163 | 7-11-62
8-16-62
9-06-62
10-10-62
11-15-62 | 12-04-62
1-03-63
2-13-63
3-06-63
4-16-63
5-16-63 | | GROUND
SURFACE
ELEVATION
IN FEET | RTH COASTAL REGION | | 488 • 0 | 515.0 | | | 230•0 | | 205*0 | | | STATE WELL
NUMBER | NORT | HOPLAND VALLEY | 13N/11W-19P01 M
CONT. | 13N/11₩-20G01 M | | ALEXANDER VALLEY | 10N/09W-18B01 M | | 10N/09W-26L02 M | | TABLE C-2 | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |--------------------------|---|---|--|--|-----------------------------|-------------------------|---|---|---|--|-----------------------------| | | | | | | | | | | | | | | ON | NORTH COASTAL REGION | REGION | | | | NOR | NORTH COASTAL REGION | EGION | | | | | ALEXANDER VALLEY | | | 1-17.00 | | | SANTA ROSA AREA | A: | | 1-18.01 | | | | 11N/10W-19F02 M
CONT. | 346.0 | 1-03-63
2-13-63
3-06-63
4-17-63
5-14-63 | NW WW
E • • • • • • • • • • • • • • • • • • • | 3473.65
3473.65
3475.44
3470.7 | 2000 | 8N/09W-36N01 M
CONT. | 0 • 0 6 | 9-04-62
10-09-62
11-14-62
12-03-62
1-02-63
3-05-63 | 12.0
12.6
11.64
111.64
9.1
9.1 | 78.0
77.4
78.6
78.6
80.9
86.6 | 9000 | | SANTA ROSA VALLEY | | | 1-18.00 | | | | | 4-16-63
5-13-63 | 2 • 5 | 87.5 | | | SANTA ROSA AREA | REA | | 1-18.01 | | | | | 6-06-63 | 5.6 | 84.4 | | | 6N/08W-07P02 M | 0.56 | 7-10-62 | 26.7 | 68.3 | 2000 | HEALDSBURG AREA | E.A. | | 1-18.02 | | | | | | 9-04-62 | 26.1 | 68.0 | | 8N/09W-03P01 M | 77.0 | 7-11-62 | 5.7 | 71.3 | 2000 | | | | 11-14-62 | 19.8 | 75.2 | | | | 9-06-62 | 4. | 73.6 | | | | | 12-03-62 | 20.7 | 74.3 | | | | 10-10-62 | У• С
П | 11.6 | | | | | 2-12-63 | 15.2 | 79.8 | | | | 12-03-62 | to 1 | | | | | | 3-05-63 | 19.5 | 75.5 | | | | 2-12-63 | 3 6 | | | | | | 5-13-63 | | | | | | 3-05-63 | 2 • 3 | 74.7 | | | | | 6-06-63 | 13•1 | 81.9 | | | | 4-16-63
5-13-63 | | | | | 6N/08W-13R01 M | 115.0 | 7-10-62 | 20.1 | 6* 76 | 2000 | | | 6-06-63 | 5.5 | 71.5 | | | | | 8-14-62 | 22.5* | 92.5 | | 8N 709W-22101 M | 67.0 | 7-11-62 | D | | 5000 | | | | 10-04-62 | 24.0 | 90.0 | | | | 8-15-62 | | | | | | | 11-14-62 | 23.8 | 91.2 | | | | 9-06-62 | 27.6 | 39.4 | | | | | 12-03-62 | 21.4 | 93.6 | | | | 11-14-62 | 26.7 | 40.3 | | | | | 2-12-63 | 15.9 | 900 | | | | 12-03-62 | 26.0 | 41.0 | | | | | 3-05-63 | 16.9 | 98.1 | | | | 1-03-63 | 25.3 | 41.7 | | | | | 4-16-63 | 13.8 | 101.2 | | | | 2-12-63 | 21.3 | 45.7 | | | | | 5-13-63 | 12.1 | 102.9 | | | | 3-05-63 | 23.5 | 4.
5. 4.
0. 4. | | | | | 6-06-63 | 13.6 | 101.4 | | | | 5-13-63 | 22.8 | 44.2 | | | 7N/07W-06R01 M | 275.0 | 4-12-63 | 14.1 | 50092 | 5050 | | | 6-06-63 | 23.9 | 43.1 | | | 7N/08W-31C01 M | 85.0 | 4-12-63 | 80 | 76.2 | 5050 | 9N/09W-28N01 M | 0.06 | 7-11-62 | 18.5 | 71.5 | 9000 | | | 0 301 | 6-13-62 | 0 | 103.0 | 4 | | | 9-06-62 | 21.4 | 68.6 | | | M 20066-W60/N/ | 0,561 | 5012711 | 0.00 | 0000 | | | | 10-10-62 | 21.8 | 75.0 | | | WELLS | |--------| | AT | | LEVELS | | WATER | | ROUND | | | AGENCY
SUPPLYING
DATA | | | 2000 | | | | | | |---------------------|---|----------------------|------------------------------|--
--|------------------------------------|--|--|--| | | WATER
SURFACE
ELEVATION
IN FEET | | | 80 0
• • | | | | | | | | GRD SUR
TO WATER
SUR IN FEET | | 1-98.00 | 16.6 | | | | | | | | DATE | EG10N | | 5-13-63 | | | | | | | WELLS | GROUND
SURFACE
ELEVATION
IN FEET | NORTH COASTAL REGION | VER VALLEY | 25.0 | | | | | | | ΑT | STATE WELL
NUMBER | z | LOWER RUSSIAN RIVER VALLEY | 7N/11W-14E01 M
CONT. | | | | | | | GROUND WATER LEVELS | AGENCY
SUPPLYING
DATA |] | | 2000 | 000 | | 0000 % | 0000 | | | N OF | WATER
SURFACE
ELEVATION
IN FEET | | | 76.2
79.2
76.2
79.3
76.4 | 136.9
135.4
135.4
136.7
137.1
137.1
140.9
140.2 | | 2000
2000
2000
2000
2000
1000
1000
1000 | 9 · · · · · · · · · · · · · · · · · · · | | | = | SUS | | | F F F F F F | | | | | | | GROUP | | | 1-18.02 | 103.88
100.88
13.00.47
113.00.41 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1-98.00 | 21.0
22.1
22.7
22.5
20.3
15.0
114.7
17.9 | 34.0.2 19.0.2 19.0.4 24.0.3 18.0.3 18.0.4 19.0.4 19.0.4 10. | | | GROUP | GRD SUR | | | | | 1-98.00 | 7-11-62 21.0
9-06-62 22.7
10-10-62 22.5
11-14-62 22.5
11-14-62 22.5
11-14-62 10.9
1-03-63 10.9
2-12-63 10.9
2-12-63 10.9
3-05-63 10.7
5-13-63 10.7
5-13-63 10.7
6-16-63 10.7
6-06-63 10.9 | 7-11-62 34*1* 8-15-62 19*2 9-06-62 19*2 10-10-62 18*1 11-14-62 18*1 12-03-63 18*4 2-12-63 10*4 4-16-63 10*4 | | | GROUP | GRD SUR
TO WATER
SUR IN FEET | | NORTH COASTAL REGION 1-18.02 | 90.0 1-03-63 13.8 2-13-63 10.8 3-05-63 10.8 4-16-63 10.7 6-13-6 6-06-63 14.2 | | LOWER RUSSIAN RIVER VALLEY 1~98.00 | | | | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |----------------------|---|---|--|--|-----------------------------|----------------------------------|---|---|---|---|-----------------------------| | | | | , | | | | | | | | | | SA | SAN FRANCISCO BAY REGION | BAY REGION | | | | SAN | SAN FRANCISCO BAY REGION | AY REGION | | | | | PETALUMA VALLEY | | | 2-01.00 | | | NAPA-SONOMA VALLEY | | | 2-02-00 | | | | 3N/06W-01001 M | 2 • 0 | 4-12-63 | 1 . 4 | 9.0 | 5050 | NAPA VALLEY | | | 2-02-01 | | | | 54/07W-20802 M | 4 1 • 0 | 8-14-62
9-04-62
10-09-62
11-14-62
12-03-62 | 92.3
80.7*
77.2
12.6
69.3 | | 2000 | 4N/04W-13E01 M | 41.0 | 7-10-62
8-16-62
9-04-62
10-09-62
11-15-62 | * | | 5000 | | | | 1-02-63
2-12-63
3-05-63
4-16-63
5-13-63 | 63.66
63.26
63.20
65.60 | 22.4 | | 5N/04W-11M01 M | 13.0 | 7-10-62
8-14-62
9-04-62
10-09-62
11-14-62 | ~ | 4 W W 4 W W
 | 5000 | | 5N/07W-21H01 M | 65.0 | 7-10
8-1462
9-04-62
10-09-62
11-1462
12-03-62 | 4444
4444
4444
4444
4444
4444
4444
4444
4444 | 118.00 | 2000 | | | 1-02-63
2-102-63
3-05-63
4-16-63
5-13-63 | 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | 1-02-163
2-12-163
3-05-163
4-16-163
5-13-163
6-063 | 4 4 1 2 2 3 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 22°7
23°7
29°5
32°4
32°3 | | 6N/04W-17A01 M | 0 % | 7-12-62
8-16-62
9-18-62
10-11-62
11-15-62 | 12.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1 | 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 5000 | | 5N/07W-26R01 M | 53.6 | 7-10-62
8-14-62
9-04-62
10-09-62
11-14-62 | 27.9
28.2
28.9
28.1
29.1 | 7 7 7 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 2000 | | | 1-04-63
2-13-63
3-06-63
4-17-63
6-07-63 | 2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.0000000000000000000000000000000000000 | | | | | 2-12-63
3-05-63
4-16-63
5-13-63
6-06-63 | | 333186 | | 7N/05W-09Q01 M
7N/05W-09Q02 M | 155.0 | 7-12-62
8-16-62
9-18-62 | 6 ° 6 ° 6 ° 14 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 14 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° | 148.4
130.8
140.4
128.4 | 5101 | | 5N/07W-35K01 M | 18.8 | 4-12-63 | 7.2 | 11.6 | 5050 | | | 11-15-62
12-04-62
1-04-63
2-13-63 | 10.4
111.4
12.4
6.0 | 144.6
143.6
142.6
149.0
146.6 | | | C Y
YING |] | | 2000 | | | 5109 | 5109 | 5109 | 5109 | 5 1 0 9 | 5109 | 5109 | 2000 | 5000 | 5109 | 2000 | |---|--------------------------|---------------|---|-------------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--
--|----------------|---| | AGENCY
SUPPLYING
DATA | | | ν. | | | 2 | 3 | 2 | 3 | 3 | 2 | 2 | v. | v.v. | 2 | w | | WATER
SURFACE
ELEVATION
IN FEET | | | 4 4 6 6 7 6 9 6 7 6 9 6 9 6 9 6 9 9 9 9 9 9 | 9.6 | | 25.9 | 3 • 9 | 33.4 | 14.3 | 101.9 | 9.1 | 96•8 | 0 4 0 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | 04400-V
•••••••
••••• | 36.4 | 38.1
40.3
40.8
38.9
41.2 | | GRD SUR
TO WATER
SUR IN FEET | | 2-02-02 | 11.4
20.5*
6.3
7.0 | 9.0 | 2-03-00 | 9.1 | 3 • 1 | 3.6 | 1.6 | 13.1 | 6 • 6 | 4.2 | 29 . 1 . 2 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 | 19.67
119.55
115.55
116.45 | 9.6 | 26.9
24.7
24.2
26.1
23.8 | | DATE | AY REGION | | 12-03-62
1-02-63
2-12-63
3-05-63 | 5-13-63 | | 3-30-63 | 3-19-63 | 3-19-63 | 3-19-63 | 3-18-63 | 3-19-63 | 3-18-63 | 7-10-62
8-14-62
9-04-62
10-09-62
11-14-62
12-03-62 | 7-11/2
3-10/5
3-11/5
4-11/6
5-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6-11/6
6- | 3-18-63 | 7-10-62
8-14-62
9-04-62
10-09-62
11-14-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SAN FRANCISCO BAY REGION | | 16.0 | | /ALLEY | 35.0 | 7.0 | 37.0 | 24.0 | 115.0 | 15.0 | 101.0 | 24.0 | | 0.94 | 65.0 | | STATE WELL
NUMBER | AA.S | SONOMA VALLEY | 5N/05W-29N01 M
CONT. | | SUISUN-FAIRFIELD VALLEY | 4N/02W-06A01 M | 4N/02W-09A01 M | 4N/03W-01D01 M | 5N/01E-36A01 M | SN/01W-07E01 M | 5N/01W-28P01 M | 5N/02W-17D02 M | 5N/02W-27J02 M | | 5N/02W-29R01 M | 5N/02W-30J01 M | | AGENCY
SUPPLYING
DATA | | | 5101 | 5101 | 5101 | 2000 | | | | | | | 2000 | 5050 | 5050 | 2000 | | WATER
SURFACE
ELEVATION
IN FEET | | | 148.8
149.1
147.6
146.5 | 152.1 | 126.8 | 284.1 | 280.4 | 284.2 | 287.8 | 288.9 | 288.5 | | 711
655.06
65.09
65.01
67.00
70.03 | 72.8
72.6
72.6
65.9
69.3 | 4 • 2 | VW4/14 | | GRD SUR
TO WATER
SUR IN FEET | | 2-02-01 | 8 1 5 6 2 2 4 5 6 4 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 | 2.9 | • 2 | 8 . 9 | 10.2 | 5 . 4 . 4 | 2 • 5 | 1.1 | 1.5 | 2-02-02 | 13.44
19.01
19.06
17.04
17.7 | 12.2
12.4
12.4
19.1
15.7 | 6 . 8 | 10.5
12.5
12.0
13.6 | | DATE | AY REGION | | 4-09-63
4-17-63
5-14-63
6-07-63 | 4-09-63 | 4-10-63 | 7-12-62 | 9-18-62 | 11-15-62 | 1-04-63 | 3-06-63 | 5-14-63 | | 7-10-62
8-14-62
9-04-62
10-09-62
11-14-62
12-03-62
1-02-63 | 2-12-/3
3-05-63
4-12-63
4-16-63
5-13-63
6-06-63 | 4-12-63 | 7-10-62
8-14-62
9-04-62
10-09-62
11-14-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SAN FRANCISCO BAY REGION | | 155.0 | 155.0 | 127.0 | 290•0 | | | | | | > | 8 5 • 0 | | 11.0 | 16.0 | | STATE WELL
NUMBER | SAN | NAPA VALLEY | 7N/05W-09002 M
CONT. | M 20000-W-09003 M | 7N/05W-23002 M | 8N/06W-10001 M | | | | | | SONOMA VALLEY | 5N/05W-17C01 M | | 5N/05W-28N01 M | 5N/05W-29N01 M | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR. IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGE NCY
SUPPLYING
DATA | |-------------------------|---|-----------|-------------------------------------|--|-----------------------------|----------------------------------|---|------------|---|--|------------------------------| | | | | | | | | | | | | | | SA | SAN FRANCISCO BAY REGION | AY REGION | | | - | SAN | SAN FRANCISCO BAY REGION | SAY REGION | | | | | SUISUN-FAIRFIELD VALLEY | VALLEY | | 2-03.00 | | | SANTA CLARA VALLEY | | | 2-09-00 | | | | 5N/02W-30J01 M | 0 • 5 9 | 12-03-62 | 24.0 | 41.0 | 2000 | SOUTH ALAMEDA COUNTY UPR AQUIFER | A COUNTY UPR | AQUIFER | 2-09-01 | | | | • | | 2-12-63 | 21.3 | 4307 | | 35/02W-08R05 M | 0 • 4 9 | 9-00-62 | 37.5 | 26.5 | 5100 | | | | 3-18-63 | 20.4 | 44.6 | 5000 | | | 69-00-7 | 32.5 | 31.5 | | | | | 5-13-63 | 18.9 | 46.1 | | 35/03W-24Q02 M | 7.0
| 9-00-62 | 7 00 | 0.0 | 5100 | | | | 6-06-63 | 9.07 | † • † † † | | | | 4-00-63 | | 9 | | | 5N/03W-26F02 M | 111.0 | 3-19-63 | 3.2 | 107.8 | 5109 | 45/01W-18G01 M | 41.0 | 7-20-62 | 104.0 | - 63.0 | 5401 | | YGNACIO VALLEY | | | 2-06-00 | | | | | 9-14-62 | 104.6 | | | | 1N/01W-07K01 M | 83.0 | 7-19-62 | 11.7 | 71.3 | 5050 | | | 11-23-62 | 101.1 | | | | | | 8-15-62 | 12.0 | 71.0 | | | | 12-21-62 | 95.3 | | | | | | 9-20-62 | 11.6 | 71.4 | | | | 1-18-63 | 92.3 | - 51.3 | | | | | 11-14-62 | 0.01 | 73.7 | | | | 3-15-63 | 81.1 | | | | | | 12-19-62 | 12.1 | 70.9 | | | | 4-26-63 | 16.7 | | | | | | 1-21-63 | 9.5 | 73.5 | | | | 5-24-63 | 75.8 | 34.8 | | | | | 2-20-63 | 7.7 | 75.3 | | | | 6-21-63 | /8 • 1 | 3/•1 | | | | | 3-20-63 | 7 7 | 76.6 | | 45/01W=22B05 M | 0.08 | 9-00-62 | 0.84 | 32.0 | 5 100 | | | | 5-25-63 | 7.8 | 75.2 | | |) | 4-00-63 | 41.5 | 38.5 | | | | | 6-20-63 | 7.6 | 73.3 | | | | 6 | | | | | M CONTILUED ON | 63.0 | 3-20-63 | 12.2 | 50.8 | 5050 | 45/01W-29C04 M | 0 • 6 6 | 8-17-62 | 104.3 | - 49.3 | 1040 | | TONTI-MEDINI | | | 1 | |) | | | 9-21-62 | 109.3 | | | | 2N/02W-27R01 M | 15.0 | 7-19-62 | 6.2 | 8 • 8 | 5050 | | | 10-19-62 | 108.7 | - 53.7 | | | | | 8-15-62 | 6.9 | 60. | | | | 3-22-03 | • | | | | | | 10-19-62 | t 4 | 100 | | 45/02W-13C02 M | 36.4 | 7-20-62 | 82.9 | | 5401 | | | | 11-19-62 | 7 . 7 | 12.7 | | | | 8-17-62 | 84.9 | - 48.5 | | | | | 12-16-62 | 1.7 | 13.3 | | | | 9-00-6 | æ | | | | | | 1-21-63 | 2.0 | 13.0 | | | | | | | | | | | 2-20-63 | 1.4 | 13.6 | | 45/02W-24002 M | 33.4 | 9-00-62 | 87.9 | 1 54.5 | 2100 | | | | 3-21-63 | 0.0 | 14.0 | | | | 4-00-63 | 1961 | 1 99 1 | | | | | 5-20-63 | 2.2 | 12.8 | | 55/01W-04F01 M | 42.0 | 7-20-62 | 74.6 | | 5401 | | | | 6-20-63 | 0.9 | 0.6 | | | | 8-24-62 | 15.4 | | | | | | | | | | | | 9-21-62 | 75.8 | | | | 2N/02W-36E01 M | 0.84 | 3-21-63 | 13.7 | 34 • 3 | 2050 | | | 10-19-62 | 75.9 | 34.0 | | | | | | | | | | | 12-14-62 | 75.9 | | | | | | | | | | | | 1-25-63 | 75.4 | - 33.4 | | | | | | - | | 0 | 0 | 0 | |---|--|--|---|--|--|---|--| | AGENCY
SUPPLYING
DATA | | 5401 | 5401 | | 5 1:00 | 2 4 0 0 | 2400 | | WATER
SURFACE
ELEVATION
IN FEET | | 1 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 1 1 1 1 1 1 1 1 1 1 | 42.8 | 11233 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - 110.4
- 115.0
- 104.8
- 104.8
- 94.1 | | GRD SUR
TO WATER
SUR IN FEET | 2-09-01 | | | 91.99
129.77
129.77
669.88
662.65 | 1111.3
57.8
2-09.02 | 11338.8
11338.9
11318.9
1121.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0 | 248.4
253.0
249.3
242.8
232.1
218.4 | | DATE | Y REGION
OUIFER | 1-11-63
2-22-63
3-22-63
4-19-63
5-17-63 | 7-20-62
8-24-62
9-21-62
10-19-62 | 111-16-62
12-14-62
1-18-63
2-22-63
3-22-63
4-19-63
6-14-63 | 9-00-62 | 7-24-62
9-21-62
10-22-65
11-21-62
11-21-62
12-21-63
3-20-63
5-21-63
5-21-63
6-25-63 | 7-23-62
8-20-62
9-20-62
10-19-62
11-20-62
12-20-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SAN FRANCISCO BAY REGION
SOUTH ALAMEDA COUNTY LWR AQUIFER | 15.0 | 24.0 | | 15.0
LARA COUNTY | | 138 | | STATE WELL
NUMBER | SAN SOUTH ALAMEDA | 45/02W-35R02 M
CONI• | 45/02W-36K01 M | | 55/01W-09M01 M 15.0
NORTH SANTA CLARA COUNTY | 65/01E-07E01 M | 65/01E-21R01 M | | AGENCY
SUPPLYING
DATA | | 5401 | 5100 | 5100 | 5100 | 5100
5050
5100
5100 | 5100 | | WATER
SURFACE
ELEVATION
IN FEET
| | | - 24.7 | - 37.1
45.0
6.9 | , www.v | 100.5
110.5
110.5
110.5
110.5
100.6
110.5
110.6
110.6 | 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | GRD SUR
TO WATER
SUR IN FEET | 6 | 75.1
75.1
73.9
73.6
72.6 | 44.5
44.5
2-09.01 | 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 27.0
27.0
26.8
24.9
22.2 | 20.6
20.6
19.0
18.9
18.9
19.1
19.1
72.0
16.5 | 159.2
82.5
97.1
104.0
101.9
90.2
81.8 | | DATE | Y REGION | 2-22-63
3-22-63
4-19-63
5-17-63 | 9-00-62
4-00-63
AQUIFER | 9-00-62
4-00-63
9-00-62
7-20-62
8-15-62 | 9-20-62
10-00-62
10-17-62
11-19-62
12-19-62
1-21-63 | 2-120-63
3-120-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100-63
4-100- | 10-26-02
4-00-63
7-20-62
8-24-62
9-21-62
10-19-62
11-16-62
12-14-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SAN FRANCISCO BAY REGION | 42.0 | 19.8
COUNTY LWR | 45°0
31°0
30°0 | | 11.0 | 15.0 | | STATE WELL
NUMBER | SAN | SOUTH ALAMEDA COUNTY UPR ADUTER
55/01W-04F01 M 42.0 3-22-
CONT. 419-
6-17-
6-14- | 5S/01W-09001 M
SOUTH ALAMEDA | 25/03W-36R01 M
35/02W-07D01 M
35/02W-19A02 M | | 35/03W-24J01 M
45/02W-02001 M | 45/02W-35R02 M | | | | Î | 010 | OND W | ו בוי | פויסטוים אישורה ררירנט או איב | WLLLS | | | | | |-------------------------|---|---|------------------------------------|--|-----------------------------|-------------------------------|---|---|------------------------------------|--|-----------------------------| | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | | | | | | | | | | | | | | | Ś | SAN FRANCISCO BAY REGION | AY REGION | | | | SA | SAN FRANCISCO BAY REGION | AY REGION | | | | | NORTH SANTA | SANTA CLARA COUNTY | | 2-09-02 | | | NORTH SANTA | NORTH SANTA CLARA COUNTY | | 2-09.02 | | | | 6S/01E-21R01 M
CONT. | 138.0 | 2-19-63
3-13-63
4-22-63
5-21-63
6-24-63 | 217.3
213.1
213.1 | - 79.3
- 75.1
- 75.1 | 2400 | 65/01W-23E01 M
CONT. | 21.0 | 1-23-63
2-21-63
3-22-63
4-00-63
5-20-63 | | | 200 | | | | ; | | | | | | 6-17-63 | 152.8* | - 131.8 | | | 68/01E-23P02 M | 240.5 | 9-17-62 | 167.6 | 72.9 | 7400 | 65/02W-16R01 M | 0.84 | 7-27-62 | | | 240 | | | | 10-18-62 | 168.8 | 71.7 | | | | 9-26-62 | | - 102.2 | | | | | 11-19-62 | 170.8 | 59.7 | | | | 10-29-62 | 139.1 | - 91.1 | | | | | 1-16-63 | 7 7 | 0 % o % | | | | 12-27-62 | | | | | | | 2-18-63 | 171.6 | 68.9 | | | | 1-28-63 | | | | | | | 3-19-63 | 170.7 | 69.8 | | | | 2-26-63 | 130.2 | - 82.2 | | | | | 5-20-63 | 155.0 | 00 - 00
0.0 0
0.0 0 | | | | 4-26-63 | | | | | | | 6-24-63 | 156.1 | 84.4 | | | | 5-27-63 | _ | - 82.9 | | | M (0000 - 3100 34 | 0 | 7-36-62 | 171.0* | 0.001 | 00% | | | 6-26-63 | 141.8 | 93.8 | | | 05/01E=50M01 M | 0 • 6 † | 8-22-62 | * O = E | 0.821 - | 7 400 | 65/02W-25C01 M | 73.0 | 7-26-62 | 158.7 | - 85.7 | 240 | | | | 9-21-62 | 165.1* | - 122.1 | | | | 8-24-62 | 154.9 | - 81.9 | | | | | 10-23-62 | 141.1 | | | | | 9-25-62 | | 1 84.3 | | | | | 11-26-62 | 131.9 | | | | | 10-24-62 | 149.3 | 10.3 | | | | | 1-24-62 | 120.7 | 777.7 | | | | 12-26-62 | | | | | | | 2-21-63 | 115.8 | | | | | 1-25-63 | | - 57.4 | | | | | 3-21-63 | 105.2 | | | | | 2-26-63 | | | | | | | 4-23-63 | 102.7 | - 59.7 | | | | 4-25-63 | | 1 60.0 | | | | | 6-25-63 | • = | | | | | 5-24-63 | | 1.007 - | | | | |) | | | | | | 6-26-63 | 150.3 | - 77.3 | | | 65/01W-10P02 M | 0.6 | 7-18-62 | B 101 | , 001 | 2000 | M (0) 45 - 10 0 / 34 | 140.1 | 7-27-62 | 271.4 | - 131.3 | 240 | | | | 9-11-62 | * • I C I | 122.4 | | | | 8-24-62 | | - 134.6 | | | | | 10-17-62 | מנ | | | | | 9-25-62 | | - 131.4 | | | | | 11-14-62 | | | | | | 10-25-62 | | - 120.0 | | | | | 12-21-62 | žž. | | | | | 11-28-62 | 259.9 | 119.8 | | | 65/01W-23E01 M | 21.0 | 7-18-62 | 174.6* | - 153.6 | 5000 | | | 1-28-63 | | - 93.2 | | | | | 8-13-62 | 145.7 | - | | | | 2-26-63 | | | | | | | 9-11-62 | 149.6 | - 128.6 | | | | 4-25-63 | |) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A | | | | | 11-14-62 | | | | | | 5-27-63 | 225 | - 85.0 | | | | | 12-21-62 | | | | | | 6-26-63 | D | | | | ICY
YING | | | 0000 | 2400 | | 2400 | 2400 | 2400 | |--|--------------------------|--------------------------|---|---|--|---
--|---| | AGENCY
SUPPLYING
DATA | | | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | | - 112.0
- 93.2
- 77.4
- 74.8
- 107.7 | 47.00
500.00
500.00
677.00 | | 0.6
5.2
8.8
16.2 | 22
119.66
119.66
119.66
119.88
119.88
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78
119.78 | 246.3
244.5
244.5
248.3
248.3 | | | | | | ******* | | 4 00 M 00 m _ | | - 401-1 | | GRD. SUR
TO WATER
SUR IN FEET | | 2-09.02 | 217.0
198.2
182.4
179.8
212.7* | 199°-2
199°-2
201°-7
199°-5
198°-7 | | 159.4
154.6
151.2
143.8
148.3 | 10 | 102.7
99.4
104.5
100.7
99.1 | | DATE | AY REGION | | 1-23-63
2-21-63
3-22-63
4-00-63
5-20-63 | 7-31-62
8-03-62
9-05-62
10-04-62
11-06-62 | 1-03-163
2-04-63
3-05-63
4-02-63
5-06-63 | 7-04-62
8-06-62
9-06-62
10-01-62
11-06-62 | 7-20-62
9-16-62
9-18-62
10-18-62
11-19-62
12-18-63
12-15-63
2-15-63
3-18-63
6-13-63
6-13-63 | 7-19+62
8-29-62
9-18-62
10-17-62
11-16-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SAN FRANCISCO BAY REGION | CLARA COUNTY | 105.0 | 151.6 | | 160.0 | 130.0 | 349.0 | | STATE WELL
NUMBER | SAR | NORTH SANTA CLARA COUNTY | 75/01E-16C0,5 M
CONT. | 75/01E-31A02 M | | 75/01E-31R01 M | 75/02E-07P01 M | 75/02E-17H01 M | | AGENCY
SUPPLYING
DATA | | | 2400 | | 2400 | | 2400 | 0000 | | SUR | | | | | | | | | | WATER AC
SURFACE SUR
ELEVATION IN FEET | | | | 23.8
22.8
21.7
21.7
22.4
20.9 | 000000000000000000000000000000000000000 | 111111
60000000000000000000000000000000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - 144.0
- 148.3
- 137.5
- 127.0 | | | | 2-09.02 | | 1 1 1 1 1 1 | | 1 1 1 1 1 1 | 1999.0
205.0
205.0
210.0
185.0
185.0
185.0
172.0
172.0 | 249.0
253.3
242.5
232.0 | | WATER
SURFACE
ELEVATION
IN FEET | YY REGION | | 207.1
212.4
206.9
204.2
205.1
205.1 | 1 1 1 1 1 1 | 1 1 1 1 1 1 | 151.1
147.2
154.6
140.9 | | | | GRD SUR SURFACE TO WATER SUR IN FEET IN FEET | SAN FRANCISCO BAY REGION | | 207.1
212.4
206.9
204.2
205.1 | 202.8
201.8
200.7
199.3
201.4 | 173.8
171.7
177.5
171.4
165.8 | 151.1
147.2
154.6
140.9 | 1999.0
205.0
205.0
210.0
185.0
185.0
185.0
172.0
172.0 | 249.0
253.3
242.5
232.0 | | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD. SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD. SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |-------------------------|---|---
--|---|-----------------------------|--------------------------|---|--|--|--|-----------------------------| | | | | | | | | | | | | | | SA | SAN FRANCISCO BAY REGION | 3AY REGION | | | | SAN | SAN FRANCISCO BAY REGION | Y REGION | | | | | NORTH SANTA | NORTH SANTA CLARA COUNTY | | 2-09-02 | | | NORTH SANTA CLARA COUNTY | LARA COUNTY | | 2-09.02 | | | | 75/02E-17H01 M
CONT. | 349.0 | 12-18-62 | 95.9 | 253.7 | 2400 | 75/02W-03001 M
CONT. | 216.7 | 6-02-63 | 345.0 | - 128.3 | 2400 | | | | 3-18-63
4-17-63
5-17-63
6-13-63 | 96.3
95.7
99.1
100.5 | 252.7
253.3
249.9
248.5 | | 75/02W-04B01 M | 218.0 | 7-30-62
8-28-62
9-26-62
10-29-62 | 248.6
254.8
248.7
232.3 | 30.6 | 2400 | | 75/02E-33C01 M | 462.0 | 7-19-62
8-15-62
9-17-62
10-17-62
11-16-62 | 223.
223.
222.
222.
203.
203.
203. | 4 4 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2400 | | | 12-18-63
12-18-63
2-27-63
3-27-63
4-27-63
5-27-63 | 1995 - 2
1995 - 3
1995 - 3
1995 - 3
1995 - 3 | 22° 33° 11° 52° 52° 53° 52° 53° 53° 53° 53° 53° 53° 53° 53° 53° 53 | | | | | 2-14-63
3-15-63
4-17-63
5-17-63
6-13-63 | 20 • 3
20 • 3
20 • 7
18 • 8
20 • 7 | 4411.7
4441.3
4443.2
443.7 | | 75/02W-22A01 M | 340.0 | 7-30-62
8-28-62
9-26-62
10-29-62 | , 0000 | 1 * * * * * * * * * * * * * * * * * * * | 2400 | | 75/01W-35C01 M | 202.0 | 7-02-62
8-01-62
9-01-62
10-02-62
11-01-62
12-03-62 | 245.0
232.0
227.0
236.0
247.0
247.0 | 111111 | 2400 | | | 111-29-62
12-28-62
1-29-63
2-27-63
3-28-63
4-27-63
5-28-63 | 266.1
236.2
256.2
156.6
140.1
140.9 | 313.9
316.8
314.4
324.2
325.9
325.7
325.7 | | | | | 2-01-63
3-01-63
4-01-63
5-01-63
6-01-63 | 232.0
217.0
204.0 | - 15.0
- 15.0
- 7.0 | | 85/01E-07H02 M | 207.0 | 7-09-62
8-06-62
9-06-62
10-16-62 | 980.1
920
930.1 | 108.9
115.0
117.9 | 2400 | | 75/02W-03G01 M | 216.7 | 7-07-62
8-28-62
9-01-62
10-06-62
11-05-62
12-03-62
12-03-62 | 35500
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
346000
34600
34600
34600
34600
34600
34600
34600
34600
346000
34600
34600
34600
34600
34600
34600
34600
34600
346000
34600
34600
34600
34600
34600
34600
34600
34600
346000
34600
34600
34600
34600
34600
34600
34600
34600
346000
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
34600
3460 | 1128 1138 1138 1138 1138 1138 1138 1138 | 2400 | | | 1110
1210
1210
1100
1100
1100
1100
1100 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 121°67
122°44
125°1
133°6
139°6 | | | | | 3-07-63
4-02-63
5-07-63 | 339°0
338°0
333°0 | - 122.3
- 121.3
- 116.3 | | 85/01E-13H01 M | 184.6 | 7-31-62
8-08-62
9-11-62 | 47.8
45.1
41.8
39.1 | 136.8
139.5
142.8
145.5 | 2400 | | LING
A LING | | | 2400 | 2400 | | | | | 2400 | | | | | | | | | | 5 100 | 5100 | | 5100 | | 5100 | 5100 | | 5100 | |---|--------------------------|--------------------------|-------------------------|-------------------------------|----------------------------------|----------------|--------------|----------|----------------|---------|--------------|----------|---------|----------------|---------|----------|----------|------------------|----------------|----------------|----------------|----------------|----------|----------------|----------------|---------|----------------| | AGENCY
SUPPLYING
DATA | | | 2 | 2 | | | | | 2 | | | | | | | | | | ď. | ď | • | 5 | | 2 | 5 | | 20 | | WATER
SURFACE
ELEVATION
IN FEET | | | 299.7 | 284.4 | 257.5 | 271.5 | 291.7 | 280.0 | 262.5 | 260.7 | 257.7 | 257.3 | 257.4 | 260.2 | 264.6 | 270.5 | 269.6 | | 543.3 | 30406 | 324.5 | | | 255.4 | 422.8 | | | | GRD SUR
TO WATER
SUR IN FEET | | 2-09-02 | 31.5 | | | 34.7 | | 34.6 | 25 • 1 | 26.9 | 50.6 | 30.3 | 30.2 | 27.4 | 23.0 | 17.1 | 18.0 | 2-10-00 | 12.0 | 112.3 | 92.4 | # | | 150.5 | 139.4 | D | p | | DATE | NY REGION | | 5-07-63 | 7-17-62
8-13-62
9-13-62 | 10-10-62
11-13-62
12-12-62 | 2-08-63 | 4-11-63 | 6-11-63 | 7-12-62 | 9-12-62 | 10-08-62 | 11-09-62 | 1-08-63 | 2-07-63 | 3-11-63 | 5-10-63 | 6-29-63 | | 9-01-62 | 9-01-62 | 3-00-63 | 9-00-62 | ; | 3-00-63 | 9-01-62 | 3-00-63 | 9-01-62 | | GROUND
SURFACE
ELEVATION
IN FEET | SAN FRANCISCO BAY REGION | CLARA COUNTY | 331.2 | 314.6 | | | | | 287.6 | | | | | | | | | | 555.3 | 6 9 7 | | 361.0 | | 312.9 | 562.2 | | 551.0 | | STATE WELL
NUMBER | SA | NORTH SANTA CLARA COUNTY | 85/01W-15801 M
CONT. | 95/02E-01J01 M | | | | | 95/02E-01M01 M | | | | | | | | | LIVERMORE VALLEY | 25/02E-25N01 M | 25/01W-26(01 M | | 35/01E-02E01 M | | 35/01E-11H01 M | 35/02E-02R01 M | |
35/02E-10H01 M | | AGENCY
SUPPLYING
DATA | | | 2400 | | | 2400 | | | | | | | 2,00 | 2 400 | | | | | | | 2400 | | | | | | | | WATER
SURFACE
ELEVATION
IN FEET | | | 145.5 | 143.9 | 153.5 | 164.3 | 160.8 | 159.0 | 157.1 | 166.3 | 173.7 | 185.3 | 227.1 | 220.4 | 215.3 | 213.4 | 214.6 | 213.7 | 225.5 | 228.7 | 297.9 | 297.0 | 297.3 | 297.3 | 299.2 | 300.9 | 3000 | | GRD SUR
TO WATER
SUR IN FEET | | 2-09-02 | 39.1 | 35°4
32°0 | 31.1 | 44.7 | 48.2
50.0 | 50.0 | 51.9 | 42.7 | 12 th the th | 23.7* | 13.6 | 19.3 | 24.4 | 26.3 | 25.1 | 26.0
12.8 | 14.2 | 11.0 | 3303 | 34.2 | 33.9 | 33.9 | 32.0 | 30.3 | 7 • 06 | | DATE | AY REGION | | 11-08-62 | 1-0/-63
2-06-63
3-07-63 | 5-09-63
6-06-63 | 7-11-62 | 9-11-62 | 11-08-62 | 1-08-63 | 3-11-63 | 5-10-63 | 6-06-63 | 7-11-62 | 8-09-62 | 9-11-62 | 10-10-62 | 12-07-62 | 1-08-63 | 3-11-63 | 6-01-63 | 7-06-62 | 8-03-62 | 10-29-62 | 11-06-62 | 1-03-63 | 3-05-63 | 4-02-03 | | GROUND
SURFACE
ELEVATION
IN FEET | SAN FRANCISCO BAY REGION | CLARA COUNTY | 184.6 | | | 209•0 | | | | | | | . 000 | 739.1 | | | | | | | 331.2 | | | | | | | | STATE WELL
NUMBER | SAR | NORTH SANTA CLARA COUNTY | 85/01E-13H01 M
CONT. | | | 85/02E-20F03 M | | | | | | | | 85/02E-22001 M | | | | | | | 85/01W-15801 M | | | | | | | | | 4 | | | | | | | | | 1 | | |-------------------------|---|---|--|--|-----------------------------|---|--|--|------------------------------------|--|-----------------------------| | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | SURFACE
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | | | | | | | | | | | | | | | SA | SAN FRANCISCO BAY REGION | 34Y REGION | | | | S.A. | SAN FRANCISCO BAY REGION | BAY REGION | | | | | LIVERMORE VALLEY | | | 2-10.00 | | | SAN GREGORIO VALLEY | E≺ | | 2-24.00 | | | | 35/02E-10H01 M
CONT. | 551.0 | 3-00-63 | 94.3 | 456.7 | 5100 | 75/05W-15E02 M
CONT. | 30.0 | 10-18-62 | | 19.3
18.1
18.5 | 5050 | | HALF MOON BAY TERRACE | RACE | | 2-22.00 | | | | | 1-23-63 | 12.0 | 18.0 | | | 55/05W-20L01 M | 73.0 | 7-18-62
8-17-62
9-18-62 | 24.0
24.2
21.6
19.5 | 64 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 5050 | | | 3-19-63
4-24-63
5-23-63
6-19-63 | | 17.5
19.0
17.3
16.4 | | | | | 11-21-62 | 17.5 | 55.5 | | 75/05W-15H02 M | 0.04 | 3-19-63 | 15.4 | 24.6 | 4050 | | | | 1-23-63 | 15.2 | 57.8 | | PESCADERO VALLEY | | | 2-26.00 | | | | | | 3-18-63
4-24-63
5-23-63
6-19-63 | 13.2
10.9
11.5
12.5 | 59.8
62.1
61.5
60.5 | | 8S/05W-09H01 M | 20.0 | 7-18-62
8-17-62
9-18-62 | 400
• • • | 15.1 | 5050 | | 55/05W-29F03 M | 50.0 | 3-19-63 | žt | | 5050 | | | 10-18-62 | 4 4 6 9 1 | 15.9 | | | 55/05W-29N01 M | 0.94 | 3-19-63 | 29.8 | 16.2 | 5050 | | | 1-23-63 | | 15.0 | | | 65/05W-08501 M | 108.0 | 3-19-63 | 59.5 | 48.8 | 5050 | | | 3-19-63 | 3 4 6 | 15.7 | | | SAN GREGORIO VALLEY | ≻ ⊔ | | 2-24.00 | | | | | 5-23-63 | 9.4 | 15.4 | | | 75/05W-13E01 M | 0.00 | 7-18-62
8-17-62
9-18-62
10-18-62
11-21-62
12-21-62
12-21-63
1-20-63
1-20-63
1-20-63
1-20-63
1-20-63
1-20-63
1-20-63
1-20-63 | 11111111111111111111111111111111111111 | 00000000000000000000000000000000000000 | 0 5 0 5 0 | 8 S \ O 5 ¥ − 1 1 1 ₹ 0 1 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0
• 0 | 3-19-63 | 13 + 1 | 91.6 | 909 | | 75/05W-15C01 M | 80.0 | 3-19-63 | 11.5 | 68.5 | 5050 | | | | | | | | 75/05W-15E01 M | 15.2 | 3-19-63 | ы
6
8 | 71.9 | 5050 | | | | | | | | 75/05W-15E02 M | 30.0 | 7-18-62 | 12.6 | 17.4 | 9090 | | | | | | | | S | |--------| | WELL | | III | | ₹ | | | | A | | Q | | S | | Ľ | | Ä | | LEVELS | | | | | | WAIER | | | | d | | ⋛ | | | | KOOND | | ξ | | ヿ | | ¥ | | _ | | AGENCY
SUPPLYING
DATA | | | 5050
5100
5050 | 5 100 | 5050 | | | | | | | | 2400 | 5050 | 5050 | |--|------------------------|---------------|---|--|-----------------|----------|----------|---------|---------------------------------------|---------|---------------------------|--------------------------|---|----------------|-----------------| | WATER
SURFACE
ELEVATION
IN FEET | | | | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2.5 | | | 10.5 | 1.6 | 7.0 | | | 2222
2333.1
2333.1
2233.1
2346.0
235.0
4.5
55.0
255.0
255.0 | 389.5 | 241.8 | | GRO SUR
TO WATER
SUR IN FEET | | 3-02-00 | | * * * * * * * * * * * * * * * * * * * | 138.5 | 140.5 | 139.3 | 136.2 | 134.4 | 135.6 | 3-03.00 | 3-03.01 | 1120 *** 1165 **9 *** 1165 **9 *** 1116 **0 **0 *** 1111 **0 **0 *** 1111 **0 *** 1101 **0 **0 *** 101 **0 **0 *** 101 **0 **0 **0 *** 101 **0 **0 **0 **0 **0 **0 **0 **0 **0 | 8 • 1 | 7.5 | | DATE | REGION | | 9-18-62
10-18-62
11-20-62
12-12-62 | 1-22-63
2-19-63
2-19-63
4-08-63
4-23-63
5-21-63
6-18-63 | 7-18-62 8-16-62 | 10-18-62 | 11-20-62 | 2-19-63 | 4-23-63 | 6-18-63 | | | 7-16-62
8-10-62
10-09-62
11-13-62
12-10-62
12-10-63
3-12-63
3-12-63
5-110-63
5-110-63 | 4-03-63 | 7-17-62 | | GROUND
SURFACE
ELEVATION
IN FEET | CENTRAL COASTAL REGION | | 30.0 | | 136.0 | | | | | | JALLEY | CLARA COUNTY | 0 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° 6 ° | 397.6 | 249.3 | | STATE WELL
NUMBER | CEN | PAJARO VALLEY | 125/02E-31K01 M
CONT. | | 13S/02E-05B01 M | | | | | | GILROY-HOLLISTER VALLEY | SOUTH SANTA CLARA COUNTY | 95/03E-27C02 M | 95/03E-29B01 M | 10S/03E-34L01 M | | AGENCY
SUPPLYING
DATA | | | 5050 | | 5050 | | 2050 | | | | | | 0 20 | 5050 | 65.0
65.2
65.4
64.5 | 653.00
653.00
653.00
653.00
883.00 | 31.4 | | - 10.4 | 2.5.0 | 4 W W | 6 • 4 | 0.0 | 1 7 0 0 0 | 10000 | | | | WATER
SURFACE
ELEVATION
IN FEET | | 3-01.00 | | 60.9
59.4
60.2
60.5
59.0
60.7
58.4
65.8
63.7
65.8 | | 3-02-00 | - | 1 | 6.1 2.2
5.9 3.5 | | | | | | D. | | WATER
SURFACE
ELEVATION
T IN FEET | REGION | 3-01-00 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 3-02-00 | 19.8 - 1 | 14.6 | | 2 t | , w , | 1 1 | 1.1 | 7-18-62 п | | |
GRD SUR SURFACE TO WATER SUR IN FEET IN FEET | CENTRAL COASTAL REGION | 3-01.00 | 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 60.3* | 3-02-00 | 19.8 - 1 | 14.6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2 · 4 | ນູ້
ກຸກຄວາມ
ກຸກຄວາມ | 13.8 | 0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0. | | | ### TABLE C-2 # GROUND WATER LEVELS AT WELLS | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRO SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD. SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | |--------------------------|---|----------|------------------------------------|--|-----------------------------|--------------------------|---|----------|-------------------------------------|--|-----------------------------| | | | | | | | | | | | | | | 8 | CENTRAL COASTAL REGION | REGION | | | | CE | CENTRAL COASTAL REGION | REGION | | | | | SQUTH SANTA | SQUTH SANTA CLARA COUNTY | | 3-03-01 | | | SAN BENITO COUNTY | OUNTY | | 3-03.02 | | | | 105/03E-34L01 M
CONT. | 249.3 | 8-16-62 | 8.9 | 240.4 | 5050 | 115/05E-13D01 M
CONT. | 255.7 | 6-18-63 | п | | 5050 | | | | 11-19-62 | 8 • 4
0 • 4 | 240.9 | | 125/04E-20C01 M | 152.9 | 3-00-63 | 27.2 | 125.7 | 5101 | | | | 1-23-63 | 10.3 | 239.0 | | 125/05E-12F01 M | 216.3 | 7-17-62 | 95.2*
88.3 | 121.1 | 5050 | | | | 3-20-63 | 5.8 | 243.5 | | | | 9-19-62 | 76.9 | 139.4 | | | | | 4-23-63 | . 0 | 242.9 | | | | 11-19-62 | | 127.4 | | | | | 5-20-63 | 0 0 | 241.3 | | | | 1-21-63 | | 135.7 | | | 105/04E-18G02 M | 259.5 | 7-17-62 | 101.4 | 158.1 | 2050 | | | 3-00-63 | 77.0 | 139.3 | 5101 | | | | 8-16-62 | 98.6 | 160.9 | | | | 4-23-63 | 7.81 | 158.1 | 0404 | | | | 10-17-62 | 104.8 | 154.7 | | | | 6-18-63 | @ | | | | | | 11-19-62 | 88•3 | 171.2 | | | | | | | | | | | 12-19-62 | 82.9 | 176.6 | | 125/05E-33A01 M | 280.0 | 7-17-62 | 90.1 | 189.9 | 2050 | | | | 1-21-63 | 76.5 | 183.0 | | | | 9-19-62 | 87.5 | 192.5 | | | | | 3-20-63 | 71.4 | 188.1 | | | | 10-18-62 | 88.5 | 191.5 | | | | | 4-03-63 | 64.5 | 195.0 | | | | 11-19-62 | *6*66 | 180.1 | | | | | 4-23-63 | 54.2 | 205.3 | | | | 12-20-62 | 88.6 | 191.8 | | | | | 6-18-63 | 63.0 | 196.5 | | | | 2-18-63 | 95.2 | 184.8 | | | 10S/04E-35E01 M | 248.0 | 4-03-63 | 81.7 | 166.3 | 5050 | | | 3-20-63 | 93.2 | 196.8 | | | 115/03E-01801 M | 227.0 | 4-00-63 | 54.7 | 172.3 | 5400 | | | 6-18-63 | • 13 | 102.0 | | | SAN BENITO | COUNTY | | 3-03-02 | | | 135/05E-11Q01 M | 325+5 | 3-00-63 | 24.0 | 271.5 | 5101 | | M 10051-750.211 | 255.7 | 7-17-62 | 25.2 | 230.5 | 5050 | SALINAS VALLEY | | | 3-04.00 | | | | 10001 70001 | | 8-16-62 | 27.8 | 227.9 | | | | | | | | | | | 9-19-62 | | 230.6 | | PRESSURE ARE | PRESSURE AREA 180 FOOT AQUIFER | UIFER | 3-04.01 | | | | | | 11-19-62 | | 226.8 | | 145/02E-03C01 M | 10.6 | 12-07-62 | 17.6 | 7.0 | 2100 | | | | 12-20-62 | 31.1 | 224.6 | | | | 3-77-63 | 10.1 | 0 | | | | | 2-18-63 | | 231.7 | | 145/02E-15L01 M | 23.0 | 12-05-62 | 24.5 | 1.5 | 2100 | | | | 4-00-63 | 22.2 | 233.5 | 5101 | | | 3-14-03 | 0.01 | 0 | | | | | 4-23-63 | | 235.7 | 5050 | 155/02E-01001 M | 42.0 | 7-18-62 | 13 | | 2100 | | | | 2-71-03 | 7300 | 69162 | | | | 8-15-62 | , , | * ~ * | | # GROUND WATER LEVELS AT WELLS | | | 0 | | 0 | 0 | | | | |---|--|---|----------------------|------------------|---|---|---|---| | AGENCY
SUPPLYING
DATA | | 2100 | | 2100 | 2100 | | 2100 | | | WATER
SURFACE
ELEVATION
IN FEET | | 1009.8
1109.6
1110.6
1112.3
1115.3
1115.7 | | 179.7 | 178.0
179.8
187.0 | 1999 8
2050
211 5
219 8
2260
2270 | 228.2
230.65
230.99 | 230.4
233.1
233.5
233.5 | | GRD SUR
TO WATER
SUR IN FEET | 3-04.03 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3-0 | 97.3 | 195.0
193.2
186.0 | | | | | DATE | REGION | 7-17-62
8-14-62
10-18-62
11-19-62
11-14-62
1-17-63
3-25-63
4-17-63 | 6-13-63 | 12-12-62 3-21-63 | 7-17-62
8-13-62
9-17-62
10-18-62
11-19-62 | 12-17-162
1-17-163
2-18-163
3-20-163
4-17-163
5-15-163
6-13-163 | 7-16-62
8-16-62
9-17-62
10-18-62
11-15-62 | 2 - 1 - 1 - 6 - 3 - 6 - 6 | | GROUND
SURFACE
ELEVATION
IN FEET | CENTRAL COASTAL REGION
EA | 172.0 | CONE | 277.0 | 373.0 | A
R
B
A | 315.0 | | | STATE WELL
NUMBER | CE.
FOREBAY AREA | 175/05E-11C01 M | ARROYO SECO CONE | 185/06E-15M01 M | 195/06E-11C01 M | UPPER VALLEY | 195/07E-10P01 M | | | AGENCY
SUPPLYING
DATA | | 2100 | 2100 | 2100 | 2100 | 2100 | | 2100 | | WATER
SURFACE
ELEVATION
IN FEET | | 7.7.
11.7.
7.1.
1.3.3.
1.3.3. | 17.0 | 38 20 | 0 4 6 6 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 27.3
22.5
11.65
2.9
2.9 | 100 | 72.0 | | GRD SUR
TO WATER
SUR IN FEET | 3-04.01 | | 41.0
37.5
89.7 | 86.8 | 51.0
3-04.01
20.2
7.2 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 65.1
60.6
68.0
93.0 | 113.3 | | DATE | REGION | 10-19-62
12-03-62
12-03-62
1-18-63
2-19-63
3-19-63
5-14-63 | 3-21-63 | 3-19-63 | 3-21-63
JUIFER
12-06-62
3-21-63 | 7-19-62
8-15-62
9-18-62
10-22-62
11-20-62
12-10-62 | 3-118-63
4-118-63
5-14-63
6-14-63 | 12-14-62 | | GROUND
SURFACE
ELEVATION
IN FEET | CENTRAL COASTAL REGION
REA 180 FOOT AQUIFER | 0 | 58.0 | 110.0 | 3-2
400 FOOT AQUIFER
11.0 12-00 | 0.69 | | 18
1
0
0 | | STATE WELL
NUMBER | CENTRAL COASTAL REGIO | | 155/03E-16M01 M | | PRESSURE AREA
135/02E-31G01 M | 145/03E-18J01 M | EAST SIDE AREA | 165/05E-17R01 M | TABLE C-2 # GROUND WATER LEVELS AT WELLS | | | | 5 | | | WAILIN LLVILLU AI WA | W L L L C | | | | |
----------------------|---|---------------------|------------------------------------|--|-----------------------------|----------------------|---|---------|--|--|-----------------------------| | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | STATE WELL
NUMBER | GROUND
SURFACE
ELEVATION
IN FEET | DATE | GRD SUR
TO WATER
SUR IN FEET | WATER
SURFACE
ELEVATION
IN FEET | AGENCY
SUPPLYING
DATA | | | | | | | | | | | | | | | CEP | CENTRAL COASTAL | REGION | | | | CEI | CENTRAL COASTAL REGION | REGION | | | | | UPPER VALLEY AREA | AREA | | 3-04.05 | | | PASO ROBLES | | | 3-04,06 | | | | 20S/08E-05R01 M | 337.0 | 12-18-62 | 64.2 | 272.8 | 2100 | 265/12E-26E01 M | 839.0 | 4-11-62 | 190.2 | 648.8
643.3 | 5100 | | 21S/09E-06K01 M | 344.0 | 12-03-62 | 12.3 | 331.7 | 2100 | 26S/12E-35M01 M | 818.0 | 4-10-62 | 135.9 | 682.1 | 5100 | | 215/10E-32NÓ1 M | 40000 | 12-03-62
3-18-63 | 21.2 | 378.8 | 2100 | 265/13E-10D01 M | 199.0 | 4-09-62 | 8 • 1
8 • 6 | 790.9 | 5100 | | 225/10E-16K01 M | 472.0 | 12-04-67 | 74.1 | 397.9 | 2100 | 265/13E-34801 M | 1005.0 | 4-12-63 | 153.7 | 851+3 | 5100 | | PASO ROBLES | | | n | | | 265/14E-16L01 M | 1018.0 | 4-09-62 | 55.6 | 962.4
954.1 | 5100 | | 245/10E-11C01 M | 618.0 | 4-12-63 | 50.5 | 567.5 | 5100 | 265/14E-35D01 M | 1134.5 | 4-11-62 | 114.9 | 1019-6 | 5100 | | 245/11E-25N01 M | 0.609 | 4-12-63 | 37.1 | 565.9 | 5 100 | 245714F_02801 M | 0.4111 | 20 - 7 | 000 | 1084. | | | 245/11E-33R01 M | 964.0 | 4-12-63 | 19.1 | 544.9 | 5 100 | | • | 4-15-63 | 28.0 | 1086.0 | | | 245/11E-35J01 M | 616.8 | 4-12-63 | 0.69 | 547.8 | 5100 | 265/15E-28002 M | 11111.4 | 4-11-62 | 49.1 | 1062.3 | 5100 | | 245/12E-17N01 M | 169.5 | 4-12-63 | 14.9 | 754.6 | 5100 | 245715F-29NO1 M | 1134.4 | 7 -11-4 | 7.7.7 | 1057-0 | 5 100 | | 245/15E-33C01 M | 1225.0 | 4-15-63 | 29.6 | 1195.4 | 5100 | | | 4-15-63 | 76.4 | 1058.0 | | | 255/11E-35G01 M | 8.448 | 4-12-63 | 40.5 | 839.3 | 5100 | 275/12E-21N01 M | 147.5 | 4-10-62 | 1.2 | 740.3 | 5100 | | 255/12E-17J01 M | 0.969 | 4-12-63 | 7.47 | 9.469 | 5100 | 275/13E-24N01 M | 1030.0 | 4-10-62 | 17.5 | 1012.5 | 5100 | | 255/12E-17R01 M | 0.869 | 4-12-63 | 9.94 | 592.4 | 5100 | | | 4-12-63 | 8 • 0 | 1022.0 | | | 255/12E-26K01 M | 747.5 | 4-15-63 | 109.0 | 638.5 | 5100 | 275/13E-32801 M | 1103.5 | 4-10-62 | 48.5
51.3 | 1055.0 | 5100 | | 255/13E-11E01 M | 1184.0 | 4-09-62 | 39•1
39•1 | 1144.9 | 5100 | 275/15E-10R02 M | 1130.0 | 4-11-62 | 45.1 | 1084.3 | 5100 | | 255/16E-17L01 M | 1164.5 | 4-09-62 | 29.5 | 1135.0 | 9100 | 275/15E-13A01 M | 1155 | 4-10-62 | 11.2 | 1142.3 | 5100 | | 255/16E-30M01 M | 1218.0 | 4-09-62 | 72.8 | 1145.2 | 5100 | 275/16E-21E02 M | 1253.0 | 4-10-62 | 1 10 10 10 10 10 10 10 10 10 10 10 10 10 | 1197.2 | 5100 | | 265/12E-04N01 M | 674.5 | 4-09-62 | 43.5 | 631.0 | 5100 | 285/12E-10G01 M | 825.0 | | - 1.2 | 825.2 | 5100 | | | AGENCY
SUPPLYING
DATA | | | 5100 | | ,
, | | | | | | | | | | | | | |--------------|--|------------------------|---------------|-----------------|------------------------|-------------------------|-----------------|--------|--------|--------|--------|--------|-------|--------------------------|-------|---------|-------|---| | | WATER
SURFACE
ELEVATION
IN FEET | | | 127.0 | 126.2 | 7.00 | | | | | | | | | | | | | | | GRD SUR
TO WATER
SUR IN FEET | | 3-07-00 | 13.0 | 13.8 | 3-26.00 | • | | | | | | | | | | | | | | OATE | REG10N | | 3-00-63 | 5-21-63 | 6 | 11-29-02 | | | | | | | | | | | | | WELLS | GROUND
SURFACE
ELEVATION
IN FEET | CENTRAL COASTAL REGION | | 140.0 | | TERRACE | 0 • 0 6 | | | | | | | | | | | | | AT | STATE WELL
NUMBER | J | CARMEL VALLEY | 165/01E-25801 M | | WEST SANTA CRUZ TERRACE | 115/02W-22K01 M | | | | | | | | | | | | | WATER LEVELS | AGE NCY
SUPPLYING
DATA | | | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | 5100 | | 5050 | 5100 | | 3 | WATER
SURFACE
ELEVATION
IN FEET | | | 816.3 | 795.8 | 844.2 | 817.2 | 1137.3 | 1126.0 | 1140.0 | 1399.4 | 903.5 | 921.8 | 881.7 | 9.766 | | 124.7 | 124.9
123.8
123.6
124.0
127.0 | | GROUND V | 1 | | 3-04.06 | 7.7 816.3 | 9.2 795.8
8.9 796.1 | 6.1 844.2
7.9 842.4 | 7.4 | 62.2 | 0.69 | 10.0 | 39.6 | 12 • 1 | 6.7 | 38.3 881.7
39.1 880.9 | 8 • 1 | 3-07-00 | 15.3 | 15.1
16.2
16.4
16.0
13.0 | | | GRD SUR SURFACE
TO WATER ELEVATION
SUR IN FEET IN FEET | REGION | 3-04.06 | | | | 7 • 4 - 1 • 3 | | | | | | | | | 3-07-00 | | 15.1
16.2
16.4
16.0
13.0 | | | GRD SUR
TO WATER
SUR. IN FEET | CENTRAL COASTAL REGION | 3-04.06 | 7.7 | 9 • 2
8 • 9 | 6.1 | 7.4 | 62.2 | 0.69 | 10.0 | 39.6 | 12 • 1 | 6.7 | 38.3
39.1 | 8 • 1 | 3-07.00 | 15.3 | 15.1
16.2
16.4
16.0
13.0 | APPENDIX D SURFACE WATER QUALITY ### TABLE OF CONTENTS | | | Page | |-----------|---|--------------------------------------| | Table D-1 | Sampling Station Data and Index | D -9 | | Table D-2 | Analyses of Surface Water North Coastal Region (No. 1) San Francisco Bay Region (No. 2) Central Coastal Region (No. 3) South Bay Aqueduct | D-11
D-11
D-19
D-31
D-48 | | Table D-3 | Summary of Coliform Analyses | D-52 | | Table D-4 | Spectrographic Analyses of Surface Water | D-53 | | Table D-5 | Radioassays of Surface Water | D-54 | | Table D-6 | Description of Salinity Observation Stations and
Maximum Observed Salinity at Bay and Delta Stations | D-57 | | Table D-7 | Salinity Observations at Bay and Delta Stations | D-58 | | Figure D- | l Electrical Conductance
Alameda Creek near Niles | D-61 | | Figure D- | 2 Electrical Conductance
Bethany Forebay at South Bay Pumping Plant | D-62 | ### SURFACE WATER QUALITY This appendix contains data pertaining to the quality of surface waters in the Central Coastal Area. The data presented are the observed physical, chemical, bacteriological, and radiological characteristics of surface waters sampled during the 1963 water year, which covers the period from October 1, 1962 through September 30, 1963. ### Laboratory Methods and Procedures Methods of mineral and bacterial analysis, in general, are those described in the American Public Health Association publication, "Standard Methods for the Examination of Water and Sewage", 11th Edition, 1960. In some cases, the methods described in U. S. Geological Survey, "Methods for Collection and Analysis of Water Samples", Water Supply Paper 1454, 1960, have been employed. Types of analyses normally made of surface water samples collected by the Department are mineral, bacterial, radiological, and trace element. ### Sampling Station Data and Index Table D-1, "Sampling Station Data and Index", is an alphabetic listing of stations from which surface water samples were collected. The analyses of these samples are reported in subsequent tables. The station number is an arbitrary number that has been assigned to each station. The location pertains to either the township, range, and section of the Public Land Survey or to latitude and longitude. The stations are classified into monitoring, investigational, and operational types. ### Analyses of Surface Water Table D-2, "Analyses of Surface Water", includes physical characteristics of the water and the results of mineral and bacterial analyses. The data are presented by region and by stream from north to south within a region. At the time the samples were collected for laboratory examination, field determinations were made for dissolved oxygen (DO) by the modified Winkler method, water temperature, and pH. Visual inspections were made of the streams and the physical conditions were noted. Field measurements of DO and temperature are reported in Table D-2. Samples collected for bacterial examination were mailed or delivered to the laboratory. Every effort was made to get the samples to the laboratory as quickly as possible. Results of bacterial determinations presented in this appendix should be considered as qualitative. Undue weight should not be given to the values for quantitative purposes. Data from operational stations are shown separately at the end of the table. These data consist of analyses of South Bay Aqueduct water. ### Summary of Coliform Analyses Coliform data included in Table D-2 are made more usable by summarizing the results of the analyses of the 24 samples collected at each station during the year. Table D-3 is a summary of these analyses. ### Spectrographic Analyses of Surface Water Spectrographic analyses were made to determine the concentration of 17 different metals in surface water samples. Most of these metals are present in very small amounts and are often called trace metals. The concentrations indicated in Table D-4 are in parts per billion instead of parts per million which is commonly used in reference to concentrations of mineral constituents. The symbols included with the constituent quantities are: - < Less than the amount indicated. - \leq Equal to or slightly less than the amount indicated. ### Radioassays of Surface Water Table D-5, "Radioassays of Surface Water", presents the radioactivity of surface water samples collected at 24 monitoring stations. The samples were collected in May and September at the same time that samples were collected for standard mineral analyses shown on Table D-2. The methods and procedures of sample preparation and determination of radioactivity in
surface water are described in "Standard Methods for the Examination of Water and Sewage, 11th Edition". Results are expressed as pico curies per liter (pc/1). The term pico curies is also written micro-micro curies and is further defined as 10^{-12} curies. Four values are reported for each sample: (a) beta activity in the solids retained on the filter (suspended material), (b) beta activity in the filtrate (dissolved material), (c) alpha activity in the solids, and (d) alpha activity in the filtrate. Sample counts are corrected for background and geometric efficiency. Standard statistical procedures are utilized to compute the 0.9 error. The final result is expressed (symbolically) as $x \pm y$ pc/1. This means that in a series of determinations on the same sample, the value of x should fall between x - y and x + y 90 percent of the time. ### Salinity Observations at Bay and Delta Stations Table D-6 describes the ten stations for which salinity data are listed in Table D-7 and includes maximum observed salinity at bay and delta stations. Table D-7 presents chloride concentrations of samples collected at ten stations between Sobrante Beach and Collinsville for the period October 1, 1962 through June 30, 1963. From July 1, 1963 through September 30, 1963, samples were collected from only six of the stations. ### Electrical Conductance Data from two electrical conductivity recorders are present in Figures D-1 and D-2. These data are machine prepared graphs. Daily mean values are plotted in Figure D-1 and single daily reading at 1300 hours are plotted in Figure D-2. Each figure or graph presents the data from a station. The beginning of the continuous conductivity record occurred during 1963 and is indicated by the beginning of the graph on each figure. TABLE D-1 SAMPLING STATION DATA AND INDEX | Station | Station
Number | Location | Beginning
of
Record | Station ^C
Type | Sampled ^d
by | Analysis
on
page | |--|-------------------|---|---------------------------|------------------------------|----------------------------|------------------------| | ALAMEDA CREEK NEAR NILES | 73 | 4S/1W-15 | Dec., 1951 | н | DWR | 0-23 | | ALAMEDA CREEK NEAR NILES | 73 | 4S/1W-15 | Dec., 1959 | M | USGS | D-20 | | ALISAL CREEK ON OLO STAGE ROAD NEAR SALINAS | 200 | 14S/4E-30 | e | M | MCFCWCD | Ð-40 | | ALTAMONT CREEK AT ALTAMONT TURNOUT OF SOUTH BAY AQUEDUCT | 201 | 2S/3E-31 | June, 1962 | 0 | OWR | D-27 | | ARROYO DE LA LAGUNA AT VERONA | 202 | 3S/1E-29 | Dec., 1959 | M | USGS | D-23 | | ARROYO DEL VALLE NEAR LIVERMORE | 71 | 4S/2E-4 | July, 1958 | М | DWR | D-26 | | ARROYO SECO RIVER NEAR SOLEDAD | 203 | 19S/6E-16 | е | м | MCFCWCD | 0-42 | | BEAN CREEK ONE MILE EAST OF FELTON | 204 | 10S/2W-22 | Aug., 1963 | 1 | DWR | D-32 | | BEAR CREEK AT BOULDER CREEK | 205 | 9S/2W-30 | Aug., 1963 | 1 | DWR | D-34 | | BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK | 206 | 9S/2W-10 | Aug., 1963 | I | DWR | D=34 | | BENICIA | 235 | 38°02' Lat ^b
122°09' Long | 1944 | м | DWR | p~57 | | BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT | 207 | 2S/3E-10 | April, 1962 | 0 | DWR | D=48 | | BIG RIVER NEAR MOUTH | 8c | 17N/17W-24 | Jan., 1959 | М | DWR | D-12 | | BOULDER CREEK AT BOULDER CREEK | 208 | 9S/2W-30 | Aug., 1963 | I | DWR | D-34 | | BRANCIFORTE CREEK NEAR SANTA CRUZ | 209 | 11S/1W-7 | Aug., 1963 | I | DWR | D-31 | | CARMEL RIVER AT ROBLES DEL RIO | 83 | 17S/2E-2 | Jan., 1952 | н | OWR | D-47 | | CLEAR CREEK AT BROOKDALE | 210 | 9S/2W-32 | Aug., 1963 | I | OWR | D-34 | | COLLINSVILLE | 236 | 38°04' Lat ^b
121°51' Long | 1924 | м | OWR | D-57 | | COYOTE CREEK NEAR MADRONE | 82 | 9S/3E-9 | Jan., 1952 | м | DWR | D-29 | | CROCKETT | 237 | 38°03' Lat ^b
122°13' Long | 1946 | М | DWR | D-57 | | FALL CREEK ONE-HALF MILE NORTH OF FELTON | 211 | 10S/2W-16 | Aug., 1963 | I | OWR | D-33 | | GABILAN CREEK ON OLD STAGE ROAD NEAR SALINAS | 212 | 13S/3E-35 | е | М | MCFCWCD | D=39 | | GUALALA RIVER, SOUTH FORK, NEAR ANNAPOLIS | 9a | 10N/14W | Jan., 1959 | м | DWR | 0-14 | | INNISFAIL FERRY | 238 | 38°11' Let ^b
121°58' Long | 1929 | N | DWR | 0-57 | | KINGS CREEK TWO MILES NORTH OF BOULDER CREEK | 213 | 9S/2W-18 | Aug., 1963 | 1 | DWR | D-35 | | LIVERMORE CANAL AT PATTERSON RESERVOIR | 214 | 3S/3E-6 | Aug., 1962 | 0 | OWR | D-50 | | LOMPICO CREEK ONE MILE NORTH OF OLYMPIA | 215 | 10S/2W-11 | Aug., 1963 | 1 | DWR | 0-33 | | LOS GATOS CREEK NEAR LOS GATOS | 74 | 8S/1W-29 | Dec., 1951 | N | DWR | D=28 | | LOVE CREEK AT BEN LOMOND | 216 | 10S/2W-4 | Aug., 1963 | I | DWR | D-34 | | MARTINE2 | 239 | 38°02' Lat ^b
122°08' Long | 1926 | М | DWR | D-57 | | NACIMIENTO LAKE AT DAM NEAR SAN MIGUEL | 217 | 25S/10E-15 | e | М | NCFCWCD | D=46 | | NACIMIENTO RIVER NEAR SAN MIGUEL | 43b | 25S/11E-4 | July, 1958 | M | DWR. | D=45 | | NAPA RIVER NEAR ST. HELENA | 72 | 8N/5W-33 | Dec., 1951 | M | DWR | D-19 | | NATIVIDAD CREEK ON OLD STAGE ROAD NEAR SALINAS | 218 | 14S/3E-12 | е | M | MCFCWCD | D-40 | | NAVARRO RIVER NEAR NAVARRO | 8b | 15N/16W-7 | Jan., 1959 | м | DWR | D-13 | | NEWELL CREEK ONE MILE NORTHEAST OF BEN LOMOND | 219 | 10S/2W-3 | Aug., 1963 | 1 | DWR | D-33 | | | | | l . | 1 | | | a Locations are referenced to Mt. Diablo Base and Meridian. b Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section. c M-Monitoring, I-Investigational, O-Operational. d OMR-Department of Water Resources, USGS-United States Geological Survey, MCFMCD-Monterey County Flood Control and Water Conservation District. e Beginning of record prior to 1950. TABLE D-1 SAMPLING STATION DATA AND INDEX | Station | Station
Number | Location ^a | Beginning
of
Record | Station ^C
Type | Sampled ^d
by | Analysis
on
page | |---|-------------------|---|---------------------------|------------------------------|----------------------------|------------------------| | PAJARO RIVER NEAR CHITTENDEN | 77 | 12S/3E-12 | Dec., 1951 | М | DWR | D-36 | | PANCHO RICO CREEK NEAR SAN ARDO | 220 | 22S/10E-16 | e | м | MCFCWCD | D=42 | | PITTSBURG | 240 | 38°02' Lat ^b
121°53' Long | 1945 | н | DWR | D~57 | | PORT CHICAGO | 241 | 38°04' Lat ^b
122°02' Long | 1946 | м | DWR | D=57 | | RUSSIAN RIVER, EAST FORK, AT POTTER VALLEY POWERHOUSE | 10a | 17N/11W-6 | May, 1951 | М | DWR | D=18 | | RUSSIAN RIVER AT GUERNEVILLE | 10 | 8N/10W-32 | April, 1951 | М | DWR | D-15 | | RUSSIAN RIVER NEAR HEALDSBURG | 9 | 9N/9W-22 | April, 1951 | М | DWR | D-16 | | RUSSIAN RIVER NEAR HOPLAND | 8a | 14N/12W-36 | April, 1951 | М | DWR | D-17 | | SALINAS RIVER NEAR BRADLEY | 43c | 23S/10E-15 | July, 1958 | м | DWR | D=42 | | SALINAS RIVER AT CHUALAR BRIDGE NEAR CHUALAR | 221 | 16S/4E-8 | e | м | MCFCWCD | D=41 | | SALINAS RIVER AT NILLTOWN BRIDGE NEAR SPRECKELS | 222 | 15S/3E-18 | e | М | MCFCWCD | D-41 | | SALINAS RIVER AT PASO ROBLES | 43a | 26S/12E-28 | April, 1951 | М | DWR | D-46 | | SALINAS RIVER AT SAN ARDD BRIDGE NEAR SAN ARDD | 223 | 22S/10E-17 | е | М | MCFCWCD | D=42 | | SALINAS RIVER AT SAN LUCAS BRIDGE NEAR SAN LUCAS | 224 | 21S/9E~8 | e | м | MCFCWCD | D=42 | | SALINAS RIVER NEAR SPRECKELS | 43 | 15S/3E-18 | April, 1951 | М | DWR | D-40 | | SAN ANTONIO RIVER AT PLEYTO BRIDGE NEAR PLEYTO | 225 | 24S/9E-3 | e | м | MCFCWCD | D-43 | | SAN ANTONIO RIVER NEAR PLEYTO | 43 d | 24S/9E-3 | July, 1958 | М | DWR | D-44 | | SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION | 77a | 15S/7E-28 | July, 1958 | М | DWR | D-37 | | SAN LORENZO RIVER AT BIG TREES | 226 | 10S/2W-27 | Aug., 1963 | I | DWR | D-31 | | SAN LORENZO RIVER AT BIG TREES NEAR FELTON | 75 | 10S/2W-27 | Dec., 1951 | м | DWR | D-31 | | SAN LORENZO RIVER AT BOULDER CREEK | 227 | 9S/2W-3D | Aug., 1963 | I | DWR | D-35 | | SAN LORENZO RIVER SIX MILES NORTH DF BOULDER CREEK | 228 | 8\$/3W-25 | Aug., 1963 | 1 | DWR | D-35 | | SAN LORENZO RIVER AT FELTON | 229 | 10S/2W-22 | Aug., 1963 | I | DWR | D-33 | | SAN LORENZO RIVER AT SANTA CRUZ | 230 | 11S/2W-12 | Aug., 1963 | 1 | DHR | D-31 | | SOBRANTE BEACH | 242 | 38°00' Latb
122° 20' Long | 1961 | М | DWR | D-57 | | SOQUEL CREEK AT SOQUEL | 76 | 11S/1W-10 | Dec., 1951 | 21 | DWR | D=35 | | SPOONBILL CREEK | 243 | 38°04' Lat ^b
121°54' Long | 1957 | М | DWR | D-57 | | TORD CREEK AT HIGHWAY 117 BRIDGE NEAR SALINAS | 231 | 15S/2E-35 | е | М | MCFCWCD | D-40 | | TWO BAR CREEK ONE MILE NORTH DF BOULDER CREEK | 232 | 9S/2W-19 | Aug., 1963 | I | DWR | D-35 | | UVAS CREEK NEAR MORGAN HILL | 96 | 1DS/3E-17 | July, 1952 | M | DWR | D-38 | | WEST SUISUN | 244 | 38°05' Lat ^b
122°06' Long | 1946 | М | DWR | D-57 | | ZAYANTE CREEK AT FELTON | 233 | 10S/2W-22 | Aug., 1963 | 1 | DWR | D-32 | | ZAYANTE CREEK AT ZAYANTE | 234 | 10S/2W-2 | Aug., 1963 | I | DWR | D-33 | | | | | | | | | | | | | | | | | Locations are referenced to Mt. Diablo Base and Meridian. b Locations given in latitude and longitude because the areas have not been surveyed for township, range, and section. c M-Monitoring, 1-Investigational, 0-Operational. d DMR-Department of Water Resources, USGS-United States Geological Survey, MCFWCD-Monterey County Flood Control and Water Conservation District. e Seginning of record prior to 1950. ### ANALYSES OF SURFACE WATER NORTH COASTAL RECION (NO. 1) | _ | _ | | _ | | | | | | | | | | | | |
 | |-------------------|-------------------------|---|----------|------------------|----------|------------------|-------------------|------------|-------------------|-----------------|----------------|------------------|-------------------|--------|-------------------------|------| | | 100 | 1 40 | | USGS | | | | | | | | | | | | | | | 0.00 | es CaCO ₃ 11y MPN/mi | | 13. | 23. | 62. | 2.3 | 62. | 62. | 21. | 230. | 23. | 2.3 | 2.3 | 2.3 | | | Γ | 2 | E do u | | 5 | 2 | 9 | 20 | 20 | 2 | 35 | 7 | m | 2 | -
 7 | | | | - | Torol N C | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ٥ | 0 | 0 | | | | | | | 63 | 09 | 20 | 52 | 07 | 53 | 31 | 47 | 55 | 9 | 59 | 61 | | | | | 5 5 | | 29 | 27 | 27 | 26 | 30 | 24 | 27 | 25 | 27 | 27 | 27 | 26 | | | | 100 | Bolide
Page | | 112 ^e | 1136 | 89 | 956 | 77° | 95° | 59 ^e | 798 | 102 ^e | 107 | 110 | 1058 | | | | | Other canatituente | | | | | | | | | PO4 =0.05 | | | | ABS = 0.0
PO4 = 0.10 | | | | ı | Silico
(SiO ₂) | T | | | | | | | | 20 | | | | 18 | | | 1 | e l | Boron S | | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | | | porte per million | equivalents per million | F 100- | S | | | | | | | | 0.03 | | | | 0.01 | | | orte per | alents. | frote
(NO ₃) | (STA. 10 | | | | | | | | 0.01 | | | | 0.01 | | | ۵ | Ainbe | Chio- | BRAGG | 9.7 | 7.5 | 6.2 | 0.21 | 0.17 | 8.6 | 0.17 | 5.8 | 7.4 | 8.6 | 9.0 | 9.2 | | | | | | AR PORT | | | | | | | | 0.10 | | | | 5.0 | | | | | Brear -
bonate
(HCO ₄) | IVER NEA | 87 | 88 | 1.13 | $\frac{74}{1.21}$ | 56
0.92 | $\frac{72}{1.18}$ | 41 0.67 | 1.05 | 1.31 | $\frac{81}{1.33}$ | 1.31 | 1.36 | | | Moses | Mineral constituents | Carbon | NOYO R | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | | | | | Potos-
erum
(X) | T | | | | | | | | 0.03 | | | | 0.0 | | | | Ì | Sodium
(No) | | 12 | 10 | 8.5 | 8.6 | 0.35 | 7.8 | 5.2 | 0.33 | 9.3 | 0.48 | 0.44 | 0.44 | | | | | Magne-
erum
(Ma) | | 1 26 | 1.20€ | 266.0 | 1.04c | 0.80€ | 1.06 | 0.610 | 4.1 | 1.10 | 1.30 | 1.19 | 5.1 | | | | | Coleium
(Co.) | | | | | | | | | 0.60 | | | | 0.80 | | | | | £ 414 | | 7.3 | 7.3 | 7.2 | 7.3 | 7.2 | 7.3 | 7.6 | 7.2 | 7.8 | 7.2 | 7.8 | 8.0 | | | | Specific | (micromhoe of 25°C) | | 168 | 170 | 134 | 142 | 116 | 143 | 89 | 128 | 153 | 160 | 165 | 170 | | | | | on de | | 06 | 86 | 103 | 93 | 66 | 104 | 95 | 66 | 96 | 96 | 901 | 95 | | | | | Dissolved
osygen | | 0 | 1.11 | 11.9 | 10.8 | 10.5 | 11.5 | 10.5 | 10.4 | 9.6 | 9.0 | 9.7 | 6.8 | | | - | | | 1 | 9 | | 65 | 7 87 | 55 | 52 1 | 52 1 | 26 | 09 | 99 | 89 | 99 | | | | | Osschorge Temp | | | 5% | 125 | 72 | 280 | 63 | 1,600 | 122 | 36 | 20 | 12 | 5.7 | | | | | ond time
compled | | 10-9-62 | 11-14-62 | 12-11-62
1345 | 1-3-63 | 2-12-63 | 3-12-63 | 4-10-63
1400 | 5-7-63
1030 | 6-13-63
0815 | 7-10-63 | 8-7-63 | 9-13-63 | | Sum of calcium and magnessum in epm. Laboratary pH. Sum of calcium and magnessum in spin. Iran (Fe), oluminum (A1), assemic (A2), copper (Cu), laad (Pb), manganese (Mn), zinc (Zn), and hazavalent chromium (Cr*6), reported have as 0.00 except as shown. Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves ONE 002 19-9 HTTP-MAKE Amusi madion and range, respectively. Calculated from analysas of depirate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United Stores Public Health Service. Mirrard analyses made by United Stores, Cacifornia Stores, Quality of Meter Branch (1925), United Stores Department of Meter and Power (L.A. Department of Water ond Power (L.A. Department of Meter and Power (L.A. Department of Public Health (D-11 TABLE D-2 7 NORTH COASTAL REGION (NO. | _ |-------------------|-------------|--------------------------------|---|-----|----------------------------|------|-----------------|----------|------------------|-----------|-------------------|------------------|-----------|-------------------|-----------------|-----------------|----------------|--------------------------|---| | | | Analyzed
by 1 | | | | | USGS | | | | | | | | | | | | | | | | bid - Coliforn | Ĭ, | - piq | | | | | 2 | 4 | 35 | 10 | 25 | - | 09 | 25 | ~ | 2 | - | 7 | | | | | Hordness t | DEGG | | | | 0 | 0 | 0 | 0 | ر، | 0 | 0 | 0 | n | 0 | 0 | 0 | | | | | | Total | | | | 83 | 88 | 65 | 7.1 | 55 | 67 | 70 | 65 | 106 | 92 | 98 | 96 | | | L | P 0.7 | and - | | | | | 25 | 23 | 25 | 23 | 25 | 23 | 23 | 22 | 26 | 22 | 23 | 21 | | | L | Totel | solved
solids | in pp | | | | 138° | 141e | 105 | 116 | 926 | 111 ^e | e5e | 101 | 186 | 136 | 138e | 1278 | | | | | 9000 | | | | | | | | | | | | PO 4 =0.10 | | | | ABS = 0.01
PO4 = 0.05 | | | | | Silica | SiO ₂) | | | | | | | | | | | 18 | | | | 16 | | | | ign | Boron | (8) | | | | 0.3 | 4.0 | 0.2 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | 0.5 | 0.4 | 0.1 | 0.2 | | | millian | per million | Fług- | | | | | | | | | | | | 0.0 | | | | 0.0 | | | parts per millian | | - IN | _ | | 1. 3c) | _ | | | | | | | | 0.7 | | | | 0.01 | • | | 00 | squivalents | Chlo- | ĵ | | BIG RIVER NEAR MOUTH (STA. | 9.6 | 0.20 | 0.03 | 0.28 | 4.8 | 0.20 | 4.8 | 9.8 | 19 | 8.0 | 9.5 | 9.5 | | | | | <u>.</u> | Sul - | (80, | | | | | | | | | - | | 0.15 | | | | 6.0 | | | | 11100111 | Carban - Bicar - S | | | RIVER) | | 2.00 | 2.05 | 1.46 | 96 | 74 | 1.46 | 53 | 1.43 | 2.00 | 118 | 119 | 123 | | | | ardi cons | - 1 | Patas- Carban –
suum ate
(K) (CO ₅) | 816 | _ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.03 | 0.00 | | | | 2 | Mine | | (K) | | | | | | | | | | | 0.04 | | | | 0.04 | | | | | Sodium | (NO) | | | | 13 | 12 0.52 | 9.8 | 9.9 | 8.4 | 9.0 | 5.5 | 0.37 | 0.74 | 0.52 | 0.52 | 11 0.48 | | | | | Mogne- S | (6M) | | | | 1.70 | 1.76c | 1.31c | 1.436 | 1.10c | 1.34 | 0.80 | 6.1 | 2.12c | 1.840 | 1.72 | 8.5 | | | | | _ | (Ca) | | | | | | | | | | | 0.80 | | | | $\frac{22}{1.10}$ | | | | | Į. | ما | | | | 7.3 | 7.4 | 8.0 | 7.3 | 7.2 | 7.2 | 7.7 | 7.3 | 8.3 | 7.2 | 8.3 | 8.0 | | | | Specific | Conductance
(micromhos | 6 6 7 10 | | | | 216 | 222 | 165 | 182 | 144 | 175 | 102 | 166 | 292 | 214 | 217 | 226 | | | | | | %Sot | | | | 76 | 95 | 93 | 91 | 97 | 66 | 104 | 97 | 107 | 103 | 119 | 88 | | | | | Dissaived | ppm 9 | | | | 9.3 | 10.5 | 10.6 | 10.7 | 9.01 | 11.2 | 11.2 | 9.8 | 10.0 | 9.5 | 10.6 | 8.2 | | | - | | P OF | | | | | 09 | 51 | 67 | 47 | 52 | 05 | 53 | 58 | 65 | 99 | 69 | 99 | | | | | Dischorge Tamp
in ofs in of | | | | | 25 (est) | 20 (est) | 380 (est) | 130 (est) | 600 (est) | 120 (eet) | 400 (est) | 170 (est) | 50 (est) | 15 (est) | 10 (est) | 5 (est) | | | | | and time | P.S.T | | | | 10-9-62
1315 | 11-14-62 | 12-11-62
1210 | 1-3-63 | 2-12-63
1110 6 | 3-12-63 | 4-10-63 | 5-7-63
1025 | 6-12-63
1530 | 7-10-63
1130 | 8-7-63
1515 | 9-13-63 | | Laboratory pH. Jam at caccious not vigorate in some (Cu), lead (Pb), manganese (Mn), sinc (Zn), and hexavalent chromium (Cr*⁶), reported here as $\frac{60}{100}$ except as shown. Sum of calcium and magnessum in apm. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. Annual mation and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Poblic Health, Division of Laboratories, or United Stores Budie; Health Service. Mineral analyses and by United Stores Carloging of Manne Branch (USD), United Stores Department of the Information (USDR); United Stores Carloging of Manne Read Power (LADMP), City of Las Angeles, Department of Lad Angeles, Department of Lad Angeles, Department of Lad Angeles, Department | | | 2 | | | | | | | | | | | | | | | |--------------|-------------|---|--------------------------------------|------------------|------------------|------------------|----------------|---------|-----------------|---------|------------------|------------------|---------|------------------|--------------------------------------|--| | | | Anolyzed
by i | | USGS | | | | | | | | | | | | | | | | bid - Coliform
ity MPN/mi | | 2.3 | 6.2 | 230. | 2.3 | 23 | 62. | 230. | 23. | 6.2 | 2.1 | 2.3 | .62 | | | | 100 | - bid
- ti
modul | | | 2 | | 2 | 70 | 2 | 190 | е | S | 7 | | s, | | | Г | | 000
000
000
000
000
000
000
000
000
00 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Hordness to CoCO ₃ Totol N.C. | | 111 | 118 | 56 | 98 | 9 | 96 | 20 | 83 | 106 | 117 | 112 | 112 | | | | Per- | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 21 | 19 | 20 | 21 | 23 | 19 | 23 | 20 | 20 | 20 | 20 | 20 | | | L | Total | o o i de | | 162 ^e | 167 ^e | 138 ^e | 142e | 100e | 141e | 76e | 122 ^g | 152 ^e | 157 | 163 ^e | 1548 | | | | | Other constituents | | | | | | | | | PO4 = 0.10 | | | | ABS = 0.00
PO ₄ = 0.05 | | | | ı | Silico
(SiO ₂) | | | | | | | | | 17 | | | | 18 | | | | ion | Boron (B) | | 0.1 | 5.5 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.2 | 0.0 | 0.1 | | | million | par million | Fluo-
ride
(F) | \$ | | | | | | | | 0.07 | | | | 0.01 | | | 1 = 1 | equivolants | trote
(NO _S) | STA. 6b | | | | | | | | 0.02 | | | | 0.0 | | | ۵ | odnive. | Chlo-
ride
(CI) | NAVARRO RIVER NEAR NAVARRO (STA. 6b) | 12
0.34 | 9.0 | 0.21 | 10
0.28 | 5.0 | 7.3 | 6.6 | 6.0 | 0.21 | 9.4 | 0,28 | 9.5 | | | • | | Sul -
fore
(SO _e) | NEAR N | | | | | | | | 0.15 | | | | 0.21 | | | atition for | | Bicor-
bonote
(HCO ₃) | O RIVER | 152 | 154 | 121 | 126 | 1.38 | 2.05 | 1.03 | 111 | 142 | 139 | 148 | 2.43 | | | etoeutiteede | | Corbon-
ote
(CO ₃) | NAVARR | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | | | M | | Potoe-
Sium
(K) | | | | | | | | | 0.04 | | | | 0.05 | | | | | Sodium
(No) | | 0.61 | 0.57 | 11 0.48 | 12 0.52 | 8.8 | 10 0.44 | 6.7 | 9.6 | 0.52 | 13 0.57 | 0.57 | 13 0.57 | | | | | Mogna-
eium
(Mg) | | 2.23c | 2.36€ | 1.88 | 1.96 | 1.30 | 1.92 | 0.990 | 8.0 | 2.12c | 2.34 | 2.24 | 0.90 | | | | | Calcium
(Co) | | | | | | | | | 1.00 | | | | 1.35 | | | | | E 410 | | 7.3 | 8.0 | 7.3 | 7.3 | 7.4 | 7.5 | 8.0 | 7.4 | 8.2 | 7.7 | 8. | 7.8 | | | | Specific | conductance
(micromhos
of 25°C) | | 266 | 275 | 227 | 234 | 164 | 232 | 125 | 203 | 250 | 259 | 268 | 268 | | | | | | | 76 | 92 | 96 | 91 | 95 | 86 | 66 | 96
| 66 | 118 | 112 | 66 | | | | | Bpm Ppm | | 9.1 | 10.0 | 10.8 | 10.5 | 10.2 | 10.8 | 10.8 | 9.6 | 4.6 | 10.5 | 10.0 | 6.9 | | | | | Temp
in OF | | 63 | 53 | 67 | 67 | 54 | 52 | 53 | 09 | 65 | 17 | 11 | 70 | | | | | Dischorge Temp
in cfe in oF | | 22 | 20 | 165 | 140 | 1,050 | 205 | 2,830 | 363 | 06 | 45 | 18 | 13 | | | | | ond time
compled
P.S.T. | | 10-9-62 | 11-14-62 | 12-11-62 | 1-3-63
0950 | 2-12-63 | 3-12-63
1020 | 4-10-63 | 5-7-63 | 6-13-63 | 7-10-63 | 8-7-63
1630 | 9-13-63 | | Loborotory pH. Field pH Sum of colcium and magnessum in spim. Iron (Fe), aluminum (A1), arrectic (A2), capper (Cu), lead (Pb), manganese (Mn), sinc (Zn), and hexavolent chromium (G^{1,6}), reported here as $\frac{0.0}{0.00}$ except as shown. Determined by oddition of analyzed constituents. Derived from conductivity vs TDS curves g Gravimetric determination. Description of the properties of the properties of depictor manify samples made by California Department of Public Health, Division at Laborataines, or United Stores Public Health Service Annual median and another Service (USPHS); Sam Bennodino County Flood Maneral analyses made by Linted Stores Goological Survey, Delity of West Endowment of the Interest Survey County Flood Service (USPHS); Sam Bennodino County Flood Maneral analyses made by Linted Stores Goological Survey (MSPHS); Sam Bennodino County Flood County Flood Service (USPHS); Sam Bennodino County Flood Service (USPHS); Sam Bennodino County Flood Service (USPHS); Family Educations, Service (USPHS); Sam Bennodino County Flood Public Health (LSPPH); Emmal Texture County County Bench, Department of West on Resources (DWR); as indicated the Service (USPHS); Family County Services, Inc. (TIL), or Californio Department of West on Resources (DWR); as indicated the Service (USPHS); Family County Services, Inc. (TIL), or Californio Department of West on Resources (DWR); as indicated the Services of the Services of County Flood Services (USPHS); Family County Services, Inc. (TIL), or Californio Department of West on Services (USPHS); Family (TABLE D-2 NORTH COASTAL REGION (NO. 7 | _ | _ | | |
 |
 | | | | | | | | | | | | _ | |-------------------|-------------------------|---------------------|---------------|--|------------------|------------------|------------------|--------|-----------------|-----------------|-------------|----------------|------------------|-------------|----------------|-----------------|---| | | | Anolyzed
by 1 | | | uses | | | | | | | | | | | | | | | | bid - Caliform | | | 6.2 | 0.62 | 2.3 | 0.62 | 620. | 23, | 130.
23. | 6.2 | 6.2 | 2.3 | 23. | 2.3 | | | r | 15 | - pid | | | 2 | 2 | 4 | 2 | 70 | 2 | 20 | ы | 4 | ~ | - | - | | | | | 00° | D B G | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | > | | 0 | 0 | 0 | | | | | | Ppm | | 118 | 114 | 96 | 95 | 99 | 76 | 59 | 89 | 104 | 118 | 110 | 113 | | | | Per | 1 90g | | | 20 | 19 | 19 | 18 | 20 | 18 | 18 | 17 | 19 | 18 | 18 | 18 | | | | Total | Bolved | E 44 | | 172 ^e | 166 ^e | 139 ^e | 135e | 97e | 136e | 90
80 | 1258 | 151 ^e | 156 | 160° | 1558 | | | | | Other constituents | | | | | | | PO4 = 0.15 | | | PO4 = 0.10 | | | | 8:18° | | | | | Slico | 2 | | | | | | | | | 118 | | | | 17 | | | | Ion | Boron | (a) | | 0.0 | 0.2 | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | | | million | ar mili | Fluor | $\overline{}$ | (A. 98) | | | | _ | | | | 0.0 | | | | 0.01 | | | ports per million | squivolents per million | - iv | (NO3) | (S) SIT | | | | | | | | 0.7 | | | | 0.0 | | | bod | squivo | Chio- | (i) | R ANNAPC | 0.34 | 0.20 | 6.6 | 0.21 | 6.5 | 6.21 | 0.12 | 5.0 | 0.20 | 0.22 | 8.0 | 9.8 | | | | u. | Sul - | (\$0° | DRK NEAI | | | | | | | | 0.23 | | | | 0.21 | | | 1 | constituents | Bicor-
banate | (HCO3) | SOUTH FO | 2.61 | 152 | 124
2.03 | 119 | 1.38 | 171 | 75 | 11.88 | 136 | 144
2.36 | 143 | 148 | | | | Minsrol cont | Corbon- | | GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS (STA. 90) | 00.00 | 0.00 | 00.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | | | : | Mins | Potas- | 3 | CUALALA | | | | | | | | 0.04 | | | | 0.05 | | | | | Sodium | (0 2) | - " | 14 0.61 | 0.52 | 10 | 9.9 | 7.6 | 0,40 | 0.26 | 8.8 | 0.48 | 0.52 | 0.48 | 0.52 | | | | | Mogne- | (M) | | 2.37 | 2.28 | 1.93 | 1.90 | 1.32c | 1.88 | 1.18c | 9.5 | 2.08 | 2.36 | 2.20 | 0.91 | | | | | Colcium | (2) | | | | | | | | | 1.00 | | | | 1.35 | | | | | Į. | مار | | 7.2 | 7.6 | 7.4 | 8.2 | 7.2 | 2.8
8.1 | 7.8 | 7.1 | 8.0 | 8.2 | 8. | 2.8
8.1 | | | | Specific | (micromhos of 25°C) | | | 280 | 270 | 226 | 220 | 159 | 222 | 144 | 207 | 246 | 255 | 261 | 268 | | | - | | | %Sof | | 62 | 96 | 76 | 76 | 68 | 103 | 66 | 102 | 120 | 130 | 83 | 119 | | | | | Dissolved | wdd | | 6.1 | 10.1 | 10.8 | 10.8 | 4.6 | 10.7 | 10.4 | 6.6 | 11.5 | 11.7 | 8.1 | 10.5 | | | | | Temp
in oF | | | 62 | 99 | 6.7 | 67 | 95 | 57 | 56 | 63 | 79 | 70 | 63 | 72 | | | | | Dischorge Temp | | | 9.1 | 35 | 52 | 82 | 050,1 | 108 | 0%6*1 | 248 | 52 | 28 | 17 | 7.7 | | | | | Ond time | P.S.T. | | 10-9-62
0915 | 11-13-62 | 12-10-62
1500 | 1-2-63 | 2-11-63
1610 | 3-11-63
1525 | 4-10-63 | 5-6-63
1540 | 6-13-63 | 7-10-63 | 8-7-63
1915 | 9-13-63
1330 | | o Field pH. b Loborotory pH. e. Sum at calcium and magnessum in agm. d. Iron (Fa), oluminum (A1), arrancia (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr*5), reparted hare as $\frac{0.0}{0.00}$ except as shown d. Iron (Fa), oluminum (A1), arrancia (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr*5), reparted hare as $\frac{0.0}{0.00}$ except as shown e Sum of colcium and magnesium in epm. Determined by addition of analyzed constituents. Grovimetric determination. e Derived from conductivity vs TDS curves. ONE OCE 19-9 B-0-50-CE h Annol median and roop, respectively, Calculated from analyses of duplicane monthly samples made by Californio Department of Public Health, Division of Laboratories, or United Stotes Public Health, Service. I kinedi analyses made by United Stotes Geological Survey, Codelity of Wester Branch (1970), Land Stotes Department of Media Internation (1980), United Stotes Public Health, Service (1974S), Son Bemordine County Flood Cornel District Red County when District Such and (1970), Land Angels Department of Waster and Power (LADPP), City of Los Angels, Department of Public Health (LABPP), Termine I State Department of Mater Resources (DWR), as indicated. Public Health (LABPP), Termine I State Department of Waste Resources (DWR), as indicated. NORTH COASTAL REGION (NO. 1) PARELOLD CT 3 | | | Anolyze
by i | | USGS | | | | | | | | | | | | | |-----------------------|--------------|---|------------------------------------|------------------|------------------|------------------|--------|------------------|---------|------------------|------------------------|------------------|---------|-----------|-----------------|---| | | | MPN/mi | | 6.2 | 23. | 2.3 | 62. | 7,000. | 23. | 130. | 13. | 6.2 | 2.3 | 6.2 | 2.3 | | | | Į. | - A-6 | | 00 | 2 | 20 | 20 | 70 | 6 | 95 | 30 | 2 | 30 | 4 | 30 | | | | | N CON | | 0 | 2 | 0 | 0 | 0 | | 2 | 0 | 0 | 2 | 0 | 0 | | | | | | | 120 | 118 | 116 | 131 | 98 | 129 | 73 | 112 | 138 | 148 | 143 | 126 | | | | | 5 6 5 | | 15 | 21 | 15 | 15 | 17 | 14 | 14 | ដ | 13 | 14 | 12 | 14 | | | | Total | solved
solids
in ppm | | 157 ^e | 159 ^e | 153 ^e | 172 | 118 ^e | 168 | 103 ^e | 1468 | 179 ^e | 184e | 180e | 1638 | | | | | Other constituents | | | | | | | | | As = 0.00
As = 0.00 | | | 000 | ABS
PO4 | | | Ì | ı | Silice
(SiQ ₂) | | m | 0.5 | m | 2 | -1 | el el | 0.0 | 1 17 | 9.0 | 9.0 | 0.1 | 6.3 | - | | | par million | Boron
(B) | | 0.3 | 0 | 0.3 | 0.2 | 0.1 | 0.3 | 0 | 0.1 | o | ol | ol | | _ | | | | Fluo-
ride
(F) | - ≘ - | | | | | | | | 3 0.02 | | | | 1 0.01 | | | Collins and advantage | olants | trote (NO _S) | (STA. | | | | | | | | 0.03 | | | | 0.0 | | | | equivolants | Chio- | GEVILLE. | 9.0 | 0.20 | 6.2 | 9.7 | 4.8 | 0.20 | 3.5 | 4.2 | 0.19 | 0.17 | 0.21 | 0.14 | | | | <u>=</u> | Sul -
fors
(SO ₄) | AT GUERN | | | | | | | | 13 0.27 | | | | 0.23 | | | | constituents | Bicor-
bonate
(HCO ₃) | RIVER | 150 | 141
2.31 | 2.36 | 160 | 108 | 2.56 | 1.41 | 2.25 | 160 | 178 | 2.85 | 150 | | | | Wineral con | Corbon-
Ote
(COs) | RUSSIAM RIVER AT GUERNEVILLE (STA. | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 00.0 | 0.00 | 5 0.17 | | | | Min | Potos-
arum
(X) | | | | | | | | | 0.03 | | | | 0.03 | | | | | Sodium
(No) | | 10 | 9.8 | 9.3 | 0.48 | 0.34 | 9.8 | 5.5 | 0.35 | 9.5 | 0.48 | 6.9 | 9.3 | | | | | Mogne-
erum
(Mg) | | 2.410 | 2.36 | 2.31c | 2.62 | 1.720 | 2.57 | 1.46 | 13 | 2.76c | 2.96€ | 2.85 | 1.17 | | | | | Colcium
(Co) | | | | | | | | | 23 | | | | 27 | | | | | ¥ +1.4 | | 7.9 | 8.0 | 8.1 | 7.4 | 7.3 | 7.8 | 8.0 | 7.4 | 7.8 | 8.2 | 7.
8.1 | 8.4 | | | | | conductonce
(micrombos
of 25°C) | | 265 | 269 | 258 | 291 | 200 | 284 | 174 | 24.5 | 302 | 310 | 304 | 275 | | | - | | | | 109 | 110 | 87 | 06 | 76 | 115 | 76 | 102 | 109 | 122 | 114 | 92 | | | | | Dieso | | 10.0 | 10.6 | 9.4 | 10.0 | 9.6 | 11.5 | 9.9 | 6.6 | 9.6 | 10.2 | 10.1 | 8.1 | | | | | T.
Eo
F. | | 89 | 79 | 54 | 52 | Ç. | 09 | 95 | 63 | 70 | 77 | 71 | 72 | | | | | Dischorge Temp
in cfs in of | | 188 | 187 | 730 | 069 | 7,310 | 576 | 11,700 | 2,130 | 077 | 216 | 142 | 216 | | | | | Oote
and time
compled
P.S.T. | | 10-8-62
1700 | 11-13-62 | 12-10-62
1210 | 1-2-63 | 2-11-63
1425 | 3-11-63 | 4-9-63 | 5-6-63 | 6-13-63 | 7-11-63 | 8-7-63 | 9-13-63
1515 | | Loborotory pH. o Field pH. Som of colcium and magnesium in spm. I sopper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr *6), reparted here as $\frac{0.0}{0}$ except as shown. Itan (Fe), aluminum (Al), assenic (As), copper (Cu), lead (Pb), manganese (Mn),
zinc (Zn), and hexavalent chromium (Cr *6), reparted here as $\frac{0.0}{0}$ except as shown. Sum of colcium and magnesium in apm. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Grovimetric determination. 32505-D-H 6-61 200 Annual median and range, respectively. Colculosed from analyses of deplicate monthly sampless made by California Department of Public Health, Division of Laboratories, or United States Bulkic Health Service. Mineral condystass made by United States Geological Survey, Quality of Mere Baracht States Department of Annia In Internation (USBR); United States Conditions (MND); Los Angeles, Department of Miner and Power (L.A. Angeles, Department of Miner and Power (L.A. Angeles, Department of Public Health (L.D. Public Health (L.D. Condition)). Conditions of Management of Department of Management Man 8 D-15 NORTH COASTAL REGION (NO. 1) | _ | _ | | | | | | | | | | | | | | | | \neg | |-------------------|----------------------|----------------------------------|---------------------|--|-----------------------|----------|----------|------------------|---------|---------|---------|--------------------|---------|------------------|--------|--|--------| | | | Analyzed
by 1 | | | USGS | | | | | | | | | | | | | | | | bid - Coliform
ity MPN/mi | | | 62. | 2.1 | 23. | 6.2 | 7,000. | 50. | 230. | 230. | 2.3 | 1.2 | 23. | 2.1 | | | | Tur- | - Page - | | | м | 4 | 20 | 2 | 20 | 50 | 160 | v | 7 | 2 | 2 | 2 | | | | | Mordness
es CoCO ₃ | Total N.C. | | 0 | 0 | 0 | 2 | 7 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | | | | | | | | 112 | 107 | 116 | 134 | 96 | 117 | 79 | Ξ | 138 | 137 | 133 | 114 | | | | Per | - Boa | | | 15 | 14 | 14 | 13 | 13 | 12 | 13 | 12 | 12 | 13 | 13 | 12 | _ | | | Totol | perios | E 00 C | | 144 | 1416 | 149e | 170 ^e | 120e | 151 | 104 | 1478 | 170e | 171 ^e | 170e | 138 ⁸ | _ | | | | Other constituents | | | | | | | | | | PO4 = 0.10 | | | | As = 0.00
ABS = 0.0
Po ₄ = 0.05 | | | | | Silico | (3) (C) | | | | | | | | | 21 | | | | 15 | | | | lion | Boron | (9) | | 0.3 | 0.5 | 0.4 | 0.3 | 0.3 | 0.3 | 0.0 | 0.2 | 0.4 | 0.5 | 0.2 | 0.3 | | | million | per million | F1u0- | | | | | | | | | | 0.2 | | | | 0.01 | _ | | ports per million | 1 1 | - N | (ND3) | (STA. 9 | | | | | | | | $\frac{2.1}{0.03}$ | | | | 0.01 | | | 00 | aquivolants | Chlo- | (i) | DSBURG | 0.21 | 0.14 | 0.14 | 8.0 | 3.2 | 0.15 | 0.10 | 3.8 | 3.0 | 5.1 | 7.6 | 5.8 | | | | Ē | Sul - | (80°) | AR HEAL | | | | | | | | 0.23 | | | | 9.0 | | | | titusnts | Bicor- | (HCD ₃) | IVER NE | 2.36 | 2.23 | 143 | 161 | 115 | 144 | 1.61 | 137 | 168 | 2.75 | 160 | 141 | | | | Mineral constituents | Carban- | (\$00) | RUSSIAN RIVER NEAR HEALDSBURG (STA. 9) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | Mine | | E(X) | . A. | | | | | | | | 0.03 | | | | 0.03 | | | | | Sodium | (%o) | | 9.0 | 8.1 | 0.37 | 9.2 | 0.28 | 0.33 | 5.2 | 6.8 | 8.3 | 9.2 | 9.2 | 0.32 | | | | | | (6W) | |
2.25 ^c | 2.140 | 2.32 | 2.68 | 1.92€ | 2,33€ | 1.590 | 1,12 | 2.760 | 2.74c | 2.66 | 13 | | | | | Colcium | (Co) | | | | | | | | | 1.10 | | | | 25 | | | | | I | -1- | | 7.8 | 8.3 | 8.1 | 8.1 | 7.6 | 9.0 | 7.8 | 7.8 | 8.2 | 8.2 | 8.0 | 8.0 | | | | Daniel in | conductonce
(micromhos | 12 SS 10 | | 242 | 237 | 252 | 286 | 202 | 255 | 175 | 235 | 287 | 288 | 287 | 245 | | | 1 | | D us | %Sot | | 108 | 125 | 68 | 96 | 101 | 113 | 110 | 104 | 66 | 123 | 113 | 106 | | | | | Dissolved | maa. | | 9.7 | 13.0 | 9.8 | 10.4 | 10.1 | 11.5 | 11.8 | 10.1 | 6.8 | 10.0 | 9.6 | 9.1 | | | 1 | | | | | 70 | 57 1 | 52 | 52 | 09 | 59 | 75 | 3 | 70 | 79 | 73 | 74 | | | - | | Dischorge Temp | | | 189 | 077 | 388 | 987 | 2,670 | 891 | 5,580 | 1,520 | 360 | 220 | 160 | 220 | | | | | Dote ond time | | | 10-8-62 | 11-15-62 | 12-10-62 | 1-2-63 | 2-11-63 | 3-11-63 | 4-11-63 | 5-6-63 | 6-11-63 | 7-9-63 | 8-6-63 | 9-11-63
1530 | | o Field pH Sum of calcium and magnessum in epm. b Laboratory pH. Sum of calcium and magnesium in 89m. Inon (Fe), old hexavolent chromium ($G^{+}5$), response (G_{0}), lead (P_{0}), manganese (H_{0}), zinc (Z_{0}), and hexavolent chromium ($G^{+}5$), responsed here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. g Gravimetric determination. ³²⁵⁰⁵⁻D-H 6-61 200 SPD Amual madion and range, respectively. Calculosed from analyses of duplicate monthly samples made by Californio Department of Public Health, Division of Laboratories, or United States Public Health Service. Mirred condyses made by United States Geological Survey, Quality of More Banch Californio Department of Public Health Meet Details of More Resources (USPNS), Ison Bancodino County Flood Public Meeting States Geological Survey, Quality of More Resources (DMR), cas Angeles, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH), City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department of Public Health & ADPH, City of Long Beach, Department ### NORTH COASTAL REGION (NO. 1) ANALYSES OF SURFACE WATER | _ |-------------------|-------------------------|---|--------|---|--------------------------------------|----------|----------|------------------|----------------|-----------------|-----------------|-----------------|------------|------------------|------------------|------------------|--------------------------|--| | | | Anglyzed
by: | | | | uscs | | | | | | | | | | | | | | | | bid - Coliform | | | | 62. | 50. | 62. | 2.3 | 62. | 620. | 230. | 230. | 62. | 62. | 6.2 | 13. | | | | 1 | - pig
- pig | | | | 7 | 15 | 25 | ~ | 20 | 20 | 20 | 25 | 01 | 10 | 7 | 4 | | | | |
Nordnass
ac CoCO ₃ | E | | | 0 | 0 | 0 | 0 | ۰ | - | ۰ | 0 | 0 | - | 0 | ٥ | | | L | | | E | | | 18 | 77 | 71 | 105 | 67 | 77 | 2 | 86 | 89 | 88 | 80 | 79 | | | | à | 2003 | 1 | | | 19 | 16 | 18 | 19 | 17 | 16 | 15 | 15 | 14 | 15 | 15 | 14 | | | L | Total | Solved
Police
In police | | | | 112 | 104e | 96 | 143e | 92 _e | 106° | 87 ^e | 1188 | 118 ^e | 113 ^e | 107 ^e | 1048 | | | | | Other constituents | | | | | | | | | | | PO4 = 0.10 | | | 9 | ABS = 0.00
PO4 = 0.25 | | | | 1 | Silico
(SiO ₂) | + | | | | | | | | | | 7 | | | | 17 | | | | 5 | Boron Sil | + | | | 0.3 | 9.0 | 0.3 | 0.4 | 0.4 | 0.3 | 0.1 | 0.2 | 0.3 | 0.2 | 0.0 | 0.1 | | | million | equivolents per million | Fluo-
B | + | | | | -! | | - 1 | ! | !_ | | 0.01 | | | ' | 0.01 | | | gorts per militon | anta p | trote | -+- | _ | , 8a) | | | | | | | | 0.03 | | | | 0.02 | | | pod | equivol | Chlo-
ride | | _ | O (SEA | 6.9 | 0.11 | 3.6 | 7.8 | 3.5 | 5.0 | 3.5 | 3.0 | 4.4 | 6.13 | 5.0 | 3.0 | | | | ا
د | Sul -
fots | + | _ | HOPLAN | | | <u> </u> | | | | | 9.0 | | | | 0.15 | | | | ifuents | Bicor-
bonete | - 1 | _ | VER NEAS | 103 | 1.67 | 90 | 130 | 84 | 93 | 1.31 | 1.74 | 108 | 1.74 | 1.61 | 96 | | | | Mineral constituents | Corbon - B | \neg | - | RUSBIAN KIVER NEAR HOPLAND (SIA, 8a) | 0.00 | 00.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | | | | Miner | Potos- Ce | + | - | RUS | | | | | | | | 0.03 | | | | 0.0 | | | | | Sodium P | + | - | | 8.9 | 6.7 | 0.31 | 0.48 | 6.4 | 6.7 | 5.2 | 0.31 | 0.30 | 0.30 | 0.29 | 5.7 | | | | | Magne- S | 6 | | | 1.62 | 1.546 | 1.420 | 2.10c | 1.34 | 1.54 | 1.28 | 0.67 | 1.78c | 1.76 | 1.61 | 7.7 | | | | | Calcium (Ca) | + | | | | | | | | | | 1.05 | | | | 0.95 | | | - | _ | I 61 | ۵ | _ | | 7.5 | 7.7 | 7.3 | 7.3 | 7.2 | 7.2 | 7.8 | 7.6 | 8.3 | 7.6 | 7.8.0 | 7.7 | | | - | ecific | (micromhos
ot 25°C) | 1 | | | 190 | 171 | 164 | 243 | 157 | 181 | 148 | 194 | 200 | 193 | 182 | 199 | | | - | Sp | P used | 1000 | | | 102 | 26 | 06 | 96 | 93 | 101 | 96 | 68 | 113 | 114 | 114 | 111 | | | | | | E DO | | | 4.6 | 10.0 | 8.6 | 10.6 | 8.6 | 10.8 | 10.4 | 9.6 | 10.2 | 10.5 | 10.5 | 10.0 | | | - | | | + | | | 99 | 56 | 52 | 51 | 25 | 53 | 52 | 53 | 68 | 99 | 66 1 | 68 1 | | | | | Discharge Temp | | | | 236 | 345 | 006 | 124 | 1,300 | 897 | 3,820 | 527 | 156 | 185 | 163 | 244 | | | | _ | and time
sompled | | | | 10-10-62 | 11-15-62 | 12-12-62
1030 | 1-4-63
1215 | 2-13-63
1035 | 3-13-63
1130 | 4-11-63 | 5-8-63 | 6-11-63 | 7-9-63
1120 | 8-6-63 | 9-11-63
1410 | | o Field pH. b Loboratory pH. Sum of colcium and magnesium in epm. c. Sum of colcium and magnesium in epm. d. lead (Pb), manganese (Mn), z.na. (Zn), and hexavolent chromium (Cr¹⁵), reported here as 0.0 except as shown. d. Iron (Fe), aluminum (A1), areservic (A3), copper (Cu), lead (Pb), manganese (Mn), z.na. (Zn), and hexavolent chromium (Cr¹⁵), reported here as 0.00 except as shown. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. 32505-D-8 6-61 200 5F0 h. Annot medion and rong, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service. Named madyses made by United Stores Geological Survey, Quality of Water Bench (1925), Luned Stores Department of Reclamation (1938), United Stores Public Health Service (19549), Son Bennedine County Flood Control District (1957CD), Managed in the Resource (1967), Les Angels Department of Water and Power (LADMP), City of Las Angels, Department of Public Health (LBDM), Testing Ledenstries, Inc. (1712) are California Opportment of Water Resources (1988), as indicated. ### TABLE D-2 # ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 7 | | _ | | _ | |
 | | | | | | | | | | | | _ | |-------------------|--------------|---|---|--|------------------|----------|------------------|--------|-----------------|---------|--------------------|--|-----------------|-----------------|--------|--|---| | | | Analyzed
by i | | | USGS | | | | | | | | | | | | | | | | bid - Coliform | | | 620. | 6.2 | 13. | 0.23 | 62. | 6.2 | 23. | 23. | 2.3 | 2.3 | 2.3 | 6.2 | | | | Tork | - 40 m | | | 20 | 4.5 | 35 | 20 | 06 | 20 | 95 | 4.5 | 35 | 10 | 4 | ٧. | | | Γ | | Hordness
es CaCO ₃
Total N.C.
ppm ppm | | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | 0 | | | | | | | | 70 | 79 | 79 | 99 | 849 | 62 | 51 | 09 | 62 | 99 | 63 | 69 | | | | 9 | sod - | | | 16 | 17 | 16 | 16 | 13 | 12 | 12 | 12 | 13 | 12 | 12 | 13 | | | L | Total | solids
In ppm | | | 97 ^e | 906 | 87 ^e | 90e | 65 ^e | 84°e | ₉ 69 | 898 | 84 _e | 82 ^e | 978 | 896 | | | | | Other constituents | | | | | | | | | | As = 0.00
ABS = 0.0
PO ₄ = 0.10 | | | | AS = 0.00
ABS = 0.0
PO ₄ = 0.00 | | | | | Silico
(SiOg) | | 10a) | | | | | | | | 12 | | | | 13 | | | Ę | million | Boron
(B) | | (STA. |
0.3 | 0.6 | 0.4 | 0.3 | 0.1 | 0.2 | 0:0 | 0.2 | 0.3 | 0.3 | 0.0 | 6.3 | | | millio | psr m | Fluo-
rids
(F) | | CHOUSE | | | | | | | | 0.2 | | | | 0.0 | | | parts per million | equivalents | Ni-
trats
(NO ₃) | | RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE (STA. | | | | | | | | 0.0 | | | | 0.0 | | | | equi | Chio-
ride
(Ci) | | TER VALI |
5.4 | 3.5 | 0.08 | 5.6 | 0.03 | 2.8 | 0.00 | 0.05 | 0.05 | 0.07 | 0.07 | 0.00 | | | - 1 | <u>.</u> | Sul -
fats
(SO ₄) | | AT POT | | | | | | | | 5.2 | | | | 0.12 | | | | constituents | Bicar-
bonats
(HCO ₃) | | ST FORK |
87 | 82 | 1.31 | 82 | 098 | 76 | 1.05 | 73 | 1.31 | 79 | 1.25 | 1.34 | | | | Winerdi co | Carban-
ote
(CO ₃) | | VER, EAS | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | | | : | Ž. | Potos-
sium
(K) | | SLAN RI | | | | | | | | 0.01 | | | | 0.02 | | | | | Sodium
(No) | | RUS | 6.2 | 0.20 | 5.5 | 0.26 | 3.3 | 3.9 | $\frac{3.3}{0.14}$ | 4.0 | 4.3 | 0.18 | 0.18 | 48 | | | | | Mogne-
sium
(Mg) | | | 1.40 | 1.28c | 1.27 | 1.320 | 0.960 | 1.24c | 1.03 | 5.5 | 1.23 | 1.32c | 1.27c | 9.4 | | | | | Calcium
(Ca) | | | | | | | | | | 0.75 | | | | 1.00 | | | L | _ | Ale E | | |
7.5 | 7.6 | 7.2 | 7.3 | 7.3 | 7.3 | 8.1 | 7.4 | 7.9 | 7.6 | 7.8 | 8.3 | | | | Spacific | conductance
(micromhos
of 25°C) | | | 161 | 150 | 145 | 149 | 108 | 139 | 114 | 129 | 140 | 136 | 140 | 154 | | | | | ygan
%aSat | | | 96 | 97 | 06 | 92 | 102 | 96 | 97 | 102 | 100 | 100 | 107 | 101 | | | | | pp. Pp. | | | 4.8 | 10.1 | 10.4 | 10.9 | 11.2 | 10.7 | 10.9 | 10.0 | 9.6 | 9.7 | 90. | 6.9 | | | | | Tamp
in OF | | | 63 | 54 | 97 | 717 | 20 | 67 | 8 7 | 59 | 59 | 09 | 6.5 | 69 | | | | | D.schorge Tamp
in cfs in OF | | | 338 | 309 | 302 | 307 | 299 | 185 | 384 | 300 | 267 | 263 | 284 | 278 | | | | | ond time
sompled
P.S.T. | | | 10-10-62
1155 | 11-15-62 | 12-12-62
0905 | 1-4-63 | 2-13-63 | 3-13-63 | 4-11-63 | 5-7-63 | 6-11-63 | 7-9-63
1015 | 8-6-63 | 9-11-63
1245 | | o Field pH. 8 b Laborotory pH. d Jone 10 custom and inspection of the second (Pb.), manganese (Mn.), zinc (Zn.), and hexavolent chromium (Gr.*6), reported here as 0.0 except as shawn. c Sum of calcium and magnesium in epm. Determined by addition of analyzed constituents Derived from conductivity vs TDS curves Grovimetric determination. ³²⁵⁰⁵⁻D-H 6-61 200 Annuol median and mange, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service Hineact analyses rade by United States Geological Servey, Quality of Mare Branch Charles from the International Charles of Servey, Quality of Mare Branch Charles of Servey Charles of Mare Branch Charles (USBM); Lass Angeles Department of Mare Angeles Department of Mare Resources (USBMP), City of Los Angeles, Department of Servey Department of Public Health (LEDBM); Lass Angeles, Department of Mare Resources (URPR), as indicated to Lass Angeles, Department of Public Health (LEDBM); City of Los Angeles, Department of Public Mare Resources (URPR), as indicated in Servey Charles (URPR); City of Los Angeles, Department of Public Mare Resources (URPR), as indicated in Servey of Los Angeles, Department of Public Mare Resources (URPR), as indicated in Servey (URPR). ### ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2) | _ | | | _ | _ | | | | | | | | | | | | | | | | |-------------------|-------------------------|--|---|---|--------------------------------------|------|------------------|------------------|------------------|------------------|-----------------|---------|---------|--------------------------|------------------|------------------|------------------|---------|--| | | | Anolyzed
by i | | | | 0011 | 200 | | | | | | | | | | | | | | | | bid - Coliform | | | | 000 | 230. | 62. | 230. | 230. | 2,400. | 130. | 2,400. | 7,000.+ | 130. | ដូន | 62. | | | | | 100 | - 20 c | 1 | | | | 45 | m | 7 | 5 | 170 | 7 | 30 | α0 | 2 | 1 | 6 | | | | Γ | · | SO U | 5 | | | | 10 | 0 | 0 | 7 | 0 | 0 | 0 | 2 | 0 | 00 | 7 | | | | | | Hordness to CoCOs | | | | | 169 | 93 | 93 | 97 | 14 | 92 | 67 | 82 | 80 | 126 | 145 | | | | | 1 | 2003 | T | | | | 19 | 41 | 34 | 29 | . 28 | 28 | 27 | 25 | 23 | 25 | 22 | | | | | Total | solved
solids
in opm | | | | | 261 ^e | 211 ^e | 182 ^e | 158 ^e | 756 | 168 | 906 | 1588 | 134 ^e | 221 ^e | 234 ^e | | | | | | Other constituents | | | | | | | | | | | | 785 = 0:00
PO4 = 0:30 | | | | | | | | Ì | Silica
(SiO ₂) | | | | | | | | | | | | 38 | | | | | | | | ű | Boron (8) | T | | | | | 6.0 | 0.5 | 0.2 | 0.0 | 0.2 | 0.1 | 0.3 | 0.2 | 0.5 | 7.0 | | | | million | equivolents
per million | Fluo-
ride
(F) | + | | 2 | | | | | | | | | 0.0 | | | | | | | ports per million | Isnts | trote
(NO _K) | | _ | (STA. 7 | | | | | | | | | 0.07 | | | | | | | 1 | equivo | Chlo-
ride
(Cl) | | | HELENA | | 0.34 | 30 | 18 | 16 | 0.13 | 0.34 | 0.12 | 0.25 | 8.6 | 0.56 | 16 | | | | | <u>-</u> | Sul -
fots
(SO ₂) | | _ | AR ST. | | | | | | | | | 13 | | | | | | | | atitusnts | Bicor-
bonote
(HCO ₃) | | _ | NAPA RIVER NEAR ST, HELENA (STA. 72) | | 3.18 | 120 | 1.85 | 94 | 50 | 1.80 | 1.05 | 103 | 112 | 138 | 2.75 | | | | | Mineral constituents | Carbon-
ate
(COs) | _ | _ | NAPA F | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | | | | : | Min | Potos-
firum
(K) | | | | | | | | | | | | 0.02 | | | | | | | | | Sodium
(No) | | | | | 0.78 | 30 | 0.96 | 0.70 | 0.32 | 0.70 | 8.0 | 0.57 | 0.48 | 0.83 | 0.83 | | | | | | Mogne-
sum
(Mg) | | | | | 3.38€ | 1.860 | 1.870 | 1.680 | 0.82 | 1.840 | 0.97 | 8.3 | 1.60 | 2.52 | 2.90¢ | | | | | | Colcium
(Co) | | | | | | | | | | | | 19 | | | | | | | L | | I o | | | | | 7.0 | 7.3 | 7.0 | 7.1 | 7.3 | 7.2 | 7.5 | 7.1 | 7.8 | 8.3 | 7.9 | | | | | Specific | conductonce pH
(micrombos
of 25°C) a | | | | | 395 | 319 | 275 | 240 | 114 | 255 | 137 | 220 | 203 | 335 | 354 | | | | | | lved
9 mg | | | | | 4.5 | 122 | 78 | 98 | 86 | 140 | 16 | 93 | 113 | 151 | 112 | | | | | | Diasol,
0 ayg | | | | | 4.2 | 12.6 | 9.6 | 9.4 | 10.01 | 13.9 | 10.2 | 9.6 | 5.6 | 12.6 | 4.6 | | | | - | | Eo. | + | | | | 65 | 57 | 52 | 52 | 58 | 09 | 55 | 57 | 75 | 76 | 75 | | | | - | | Discharge Temp Dissolved in cfs in of osygen | 1 | | | | 1.3 | ı | 15 | 38 | 835 | 36 | 370 | 57 | 16 | 5.2 | 2.4 | Ponded | | | | | Ond time
compled | | - | | | 10-10-62
1605 | 11-15-62 | 12-12-62 | 1-4-63 | 2-13-63
1235 | 3-13-63 | 4-11-63 | 5-8-63 | 6-11-63 | 7-9-63 | 8-6-63
1220 | 9-11-63 | | o Freid pH. Loboratory pH. 32505-D-8 6-61 200 SPC Sam of colcium and magnessum in opm. I end (Pb), manganese (Mn), zinc (Zn), and hexavalent chromum (Cr *6), reparted here as $\frac{0.0}{0.00}$ except as shown. Iron (Fe), oluminum (Al), assenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromum (Cr *6), reported here as $\frac{0.0}{0.00}$ except as shown. Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves. Annual median and range trappectively. Colorioted from analyses of duplicate monthly samples made by Californio Department of Public Mobile, Division of Laboratories, or United Stores Public Health, Service. Mineal analyses made by United Stores Carloting of Warren Banch (USS), United Stores Department in In International Process (USPHS), Son Bernardino County Flood County Flood County English Managorial Stores Carloting (Warrend Power (U.A.D.) (List Angeles, Department of Managorial Process (U.A.D.) (List Angeles, Department of Managorial Process (U.A.D.) (List Angeles, Department of Managorial Stores (U.A.D.) (List Angeles, Department of Managorial Process (U.A.D.) (List Angeles, Department of Managorial Stores (U.A.D.) (List Angeles, Department of Managorial Stores (U.A.D.) (List Angeles, Department of Managorial Stores) TABLE D-2 ### ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2) | | Anolyzed | by 1 | | uscs | | | | | | | | | | | | | |--------------|------------------------|-------------------------------------|--------------------------|------------------------|-------------------------|-----------------------|---------------------------|------------------------|-------------------------|-------------------------|-------------------------|------------------------|------------|------------------------|-------------------|----------| | | Tur-
bid - Coliform | | | | | | | | | | | | | | | | | | Twr-
bid- | 74. u | | | | | | | | | | | | | | | | | Hordness | SOUP
DEGG | | 78 | 15 | 42 | 52 | 65 | 59 | 54 | 89 | 88 | 61 | 76 | 0 | - | | | | | | 166 | 110 | 200 | 203 | 221 | 264 | 284 | 311 | 354 | 210 | 237 | 140 | - 62 | | _ | - Ce 20 | 2 5
0 5 | | 97 | 36 | 41 | 47 | 77 | 41 | 35 | 39 | 7 73 | 67 | 20 | 36 | 22 | | L | 9 9 9 | pie u | | 3678 | 2358 | 4268 | 4738 | 5168 | 5348 | 4798 | 5748 | 7438 | 5128 | 604 ⁸ | | | | | | Other constituents | | Fe = 0.00
Color = 9 | Fe = 0.04
Color = 70 | Fe = 0.00
Color 20 | Fe = 0.00
Color = 15 * | Fe = 0.01
Color = 5 | Fe = 0.00
Color = 10 | Fe = 0.00
Color = 40 | Fe = 0.01
Color = 25 | Fe = 0.0
Color = 20 | | Fe = 0.00
Color = 7 | | | | | r | Silica
(SiO ₂) | | 19 | 16 | 21 | 25 | 22 | 116 | 티 | 20 | 22 | 22 | 21 | 18 | 12 | | | uo III ou | Boron
(B) | | 0.4 | 0.3 | 0.4 | 0.5 | 0.5 | 9.0 | 9.0 | 0.4 | 0.9 | 0.4 | 0.7 | 0.3 | 0.3 | | million | | rids
(F) | | 0.7 | 0.03 | 0.3 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | 0.0 | 0.0 | 0.02 | 0.3 | 0.02 | | 151 | | trats
(NO ₃) | (STA, 73) | 1.7 | 0.10 | 0.08 | 0.08 | 0.11 | 0.02 | 8.4 | 0.31 | 18 | 9.2 | 0.31 | 0.03 | 3.2 | | l°. | 100 | - 8 (C) | TIES (| 94 | 31 0.87 | 2.57 | 3.61 | $\frac{131}{3.70}$ | 3.44 | 2.82 | 3.67 | 169 | 3.81 | 161 | 38 | 0.28 | | <u>=</u> | | Sul -
fote
(SO ₄) | K NEAR P | 41 | 37 | 1.17 | 1.39 | 1.54 | 1.81 | 83 | 1,81 | 99 2.06 | 1.35 | 1.67 | 30 | 0.40 | | constituents | | bonate
(HCO ₃) | ALAMEDA CREEK NEAR NILES | 168 | 1.90 | 3.16 | 3.02 | 3.11 | 250 | 280 | 296 | 325
5.33 | 182 | 3.21 | 172 | 115 | | Minsrol con | | (CO ₃) | ALAMB | 0.00 | 0.00 | 00.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | | Min | 1 | Rick
(K) | | 4.1
0.10 | 0.15 | 0.12 | 0.12 | 5.2 | 0.11 | 6.3 | 8.4 | 8.8 | 4.8 | 6.8 | 0.19 | 0.07 | | | | Sodium
(Na) | | 67 | 30 | 2.87 | 3.70 | 3.96 | 3.74 | 3.13 | 96 | 5.44 | 95 | 113 | 38 | 0.57 | | | | Sium
(gMg) | | 19 | 11 0.90 | 1.81 | 1.81 | 24 | 2.24 | 31 2.59 | 3.13 | 3.29 | 24 | 25 2.05 | $\frac{14}{1.15}$ | 0.70 | | | | Colcium
(Ca) | | 35 | 26 | 2.20 | 45 | 49 | 3.04 | 3.09 | 3.09 | 3.79 | 4.5 | 2.69 | 33 | 1.20 | | | ī | ماه | | 7.8 | 8.2 | ė. | 8.0 | 8.2 | 8.2 | 8.1 | 1.8 | 7.5 | 7.9 | 7.4 | 7.0 | 8.0 | | | Specific | ot 25°C | | 979 | 363 | 710 | 829 | 890 | 903 | 886 | 1,030 | 1,220 | 868 | 1,000 | 977 | 251 | | | Diesolved | psygen
bpm %Sal | | | | | | | | | | | | | | | | L | Temp | <u> </u> | | | | | | | | | | | | | | | | | Discharge Temp | Mean | | 24 | 2 323 | 2 21 | 17 | 2 20 | 3.1 | 6.6 | 2 5.8 | 2.9 | 15 | 11 | 850 | 2,420 | | | | P.S.T. | | 10/1-12/62 | 10/13-15/62 | 10/16-31/6 | 11/5-15/62 | 11/16-30/62 | 12/1-10/62 | 12/11-20/62 | 12/21-31/62 | 1/1-12/63 | 1/14-18/63 | 1/19-30/63 | 1/31/63 | 2/1-2/63 | 32505-D-8 6-61 200 SPO b Laboratory pH. Just excellent and Any statement regime. (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexaralent chromium (Cr⁺⁵), reparted here as $\frac{0.0}{0.00}$ except as shown. Sum of calcium and magnessum in epm. Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves. Gravimetric determination. Annual mation and ange, respectively. Colculated from analyses of duplicate monthly samples, made by California Department of Public Health, Division of Laberatories, or United States Behale Health Service. Mineral onalyses made by United States Geological Survey, Quality of Water Branch (USSS), United States Department of the Interior Survey of Reclamation (USSS); United States Department of Media or Survey. Quality of Water Branch College Spaciment of Media of Department of Page (LADMP), City of Los Angeles, Lad Angeles, Department of Lad Ange | Γ | _ | Anolysed
by 1 | | nses | | | | | | | | | | | | | |-------------------|-------------------------|--|--------------------------|-----------|------------|-------------|--------------------|-------------------|----------------|-------------------|----------------|-------------|------------|------------------|------------|------------| | H | _ | |
 | | | | | | | | | | | | | | | L | | Coliform
MPN/ml | | | | | | | - | | | | | | | | | L | Tur | - A | | 30 | | 67 | 75 | 6.5 | 16 | 77 | 15 | 19 | 67 | 11 | | 82 | | | | Herdness es CoCO ₃ Totol M.C. |
 | 192 3 | 139 | 261 4 | 260 7 | 237 6 | 169 | 241 4 | 168 1 | 179 1 | 253 4 | 303 7 | 388 109 | 257 8 | | \vdash | - | 1 8 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
 | 30 1 | 27 1 | 32 2 | 44 2 | 42 2 | 27 1 | 29 2 | 25 1 | 25 1 | 27 2 | 28 3 | 36 3 | 40 2 | | H | loto | 20-
20-
20-
20-
20-
20-
20-
20-
20-
20- | | 3458 | 2408 | g097 | 5898 | 520 ⁸ | 290g | 400g | 2658 | 2778 | 401g | 465 ⁸ | 8969 | | | H | Ī | | | e e | 2 | 4 | - " | · · · | 2 | | | 74 | 4 | 4 | | | | | | canstituents | | - 0.0 | 0.0 | 0.0 | 0.0 | - 0.01
- 14 | • 0.06
• 35 | - 0.02
- 18 | - 0.08
- 38 | - 0.07 | • 0.01 | - 0.03 | - 0.02 | - 0.02 | | | | Other | | Fe | Fe | Fe
Color | Fe
Color | Fe | Fe | Fe | Fe
Color | Fe
Color | 9 | Fe | Fe | F) | | | | Silico
(SiO _p) | | 81 | 2 | 9] | 77 | 16 | 9 | 20 | 18 | 18 | 19 | 17 | 81 | 21 | | | Hion | 80.0M | | 4.0 | 0.4 | 0.5 | 0.7 | 0.7 | 0.3 | 0.5 | 0.3 | 0.3 | 0.5 | 9.6 | 0.0 | 0.7 | | millio | per mi | Fluo-
ride
(F) | ٠. | 0.3 | 0.07 | 0.02 | 0.07 | 0.3 | 0.03 | 0.02 | 0.0 | 0.3 | 0.0 | 0.3 | 0.07 | 0.0 | | ports par million | squivolents per million | frots
(NO ₃) | (STA. 73) | 0.08 | 3.7 | 6.3 | 9.0 | 0.18 | 0.08 | 0.10 | 3.5 | 0.05 | 3.0 | 3.2 | 4.8 | 0.07 | | å | Bquinc | Chlo-
ride
(CI) | NILES (| 38 | 0.62 | 1.64 | 3.67 | 2.93 | 0.73 | 52 | 0.62 | 0.71 | 41 | 35 | 3.50 | 3.13 | | 9 | | Sul -
fote
(SO ₄) |
X NEAR | 61 | 35 | 91 | 2.19 | 1.81 | 47 | $\frac{23}{1.52}$ | 0.92 | 40 | 1.58 | 94 | 138 | 2.02 | | atmentituents | | Bicor-
bonote
(HCO ₃) | ALAMEDA CREEK NEAR NILES | 3.25 | 160 | 258 | 3.70 | 3.44 | 3.05 | 3.84 | 181
2.97 | 3.20 | 4.08 | 283 | 340 | 3.49 | | losed M | | Corbon-
ote
(CO ₃) | ALANG | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
0.10 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Ì | Ē | Potos-
sum
(K) | | 3.7 | 3.7 | 4.6 | $\frac{4.7}{0.12}$ | 5.0 | 3.4 | 3.6 | 0.07 | 0.13 | 0.07 | 3.1 | 0.13 | 0.09 | | | Ì | (No) | | 39 | 1.04 | 2.52 | 97 | 3.52 | 30 | 2.00 | 26 | 28 | 1.91 | 2.39 | 100 | 3.48 | | | | Magne-
sium
(Mg) | | 21 1.69 | 1.18 | 30 | 2.36 | $\frac{26}{2.10}$ | 1.53 | 27.23 | 1.51 | 1.58 | 25 2.02 | 34 | 51 4.17 | 5.14 | | | | Colcium
(Co) | | 43 | 32 | 2.77 | 57 | 53 | 37 | 2.59 | 37 | 2.00 | 3.04 | 3.24 | 3.59 | | | | _ | I 80 | | 7.6 | 7.7 | 7.7 | 6: | 7.8 | 7.7 |
 | 8.3 | 8.2 | 7.6 | 7.8 | 8.2 | 9.7 | | | Specific | (micromhos
of 25°C) | | 242 | 373 | 744 | 953 | 836 | 097 | 979 | 430 | 454 | 657 | 97.1 | 1,150 | 890 | | | | Oissolved
Osygen
ppm %Sdt | | | | | | | | | | | | | | | | | | Ten or | | | | | | | | | | | | | | | | | | Dischorge Temp
in cfe in OF
Mean | | 87 | 431 | 32 | 77 | 31 | 367 | 63 | 336 | 270 | 7.5 | 33 | 18 | 21 | | | , | ond time
sompled
P.S.T. | | 2/4-12/63 | 2/13-18/63 | 2/19-28/63 | 3/1-15-63 | 3/16-26/63 | 3/28-31/63 | 4/1-6/63 | 4/7-17/63 | 4/18-27/63 | 4/28-30/63 | 5/1-10/63 | 5/11-26/63 | 5/27-30/63 | o Field pH. b Loboratory pH. Jum of colcium and magnetium in spin. I see that it is a copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavenlent chramium (Cr¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Iron (Fe), aluminum (AI), preserve (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and heavenlent chramium (Cr¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnessum in apm. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Gravimetric determination. Annual median and stongs, respectively. Calculated from analyses of duplicate rearthly samples made by California Department of Public Health, Divisson of Laboratories, or United Stones Bublic Health Service. Hamed analyses made by United Stones Cealogical Survey, Quality of Maries Branch (St.C.), United Stones Department of Public Health in Internation (USBR); United Stones Bublic Stones (USBR); Sone Burnord in Canary Flood Power Composition of Stones Cealogy, Los Analysis Department of Maries and Power (L.J. DWP), City of Las Anales, Department of Public Register, P 32505-D-8 6-61 200 SPO D-21 ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2) TABLE D-2 | ۲ | | | | | | | | | | | | | | | | | |-----------|--------------|---|--------------------------|------------------------|------------------------|------------------------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|-------------------------|--| | | | Anolyzed
by I |
 | nsgs | | | | | | | | | | | | | | | | MPN/mi | | | | | | | | | | | | | | | | Г | 7 | - piq | | | | | | | | | | | | | | | | | | N COS | | 76 | 65 | 56 | 45 | 53 | 4.7 | 07 | 31 | 28 | 28 | 30 | 35 | | | | | | | 262 | 258 | 222 | 189 | 237 | 228 | 205 | 175 | 171 | 175 | 170 | 176 | | | | | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
 | 39 | 37 | 37 | 07 | 35 | 33 | 31 | 34 | 35 | 36 | 07 | 77 | | | L | Total | solids
in pour | | 502 ⁸ | 470g | 402 ⁸ | 380 ⁸ | 4348 | 3918 | 3438 | 3168 | 3098 | 337 ⁸ | 3458 | 3898 | | | | | Other constituents | | Fe = 0.04
Calor = 7 | Fe = 0.02
Color = 6 | Fe = 0.02
Color = 7 | Fe = 0.00
Color = 10 | Fe = 0.00
Color = 10 | Fe = 0.03
Color = 8 | Fe = 0.02
Color = 15 | Fe = 0.00
Calar = 15 | Fe = 0.00
Color = 15 | Fe = 0.01
Color = 10 | Fe = 0.01
Color = 5 | Fe = 0.01
Color = 10 | | | | | (Sing) | | 21 | 14 | 16 | 18 | 19 | 17 | 18 | 18 | 17 | 30 | 17 | 22 | | | | million | Boron
(B) | | 9.0 | 0.8 | 0.6 | 9.0 | 0.5 | 9.0 | 4.0 | 0.3 | 4.0 | 0.2 | 0.2 | 0.3 | | | million | par mil | Fluo-
rids
(F) | | 0.3 | 0.02 | 0.3 | 0.3 | 0.03 | 0.0 | 0.03 | 0.0 | 0.02 | 0.0 | 0.0 | 0.0 | | | ports per | 1 1 | Ni-
trats
(NO _S) | (STA. 73) | 0.08 | 4.3 | 5.2 | 4.7 | 0.00 | 0.08 | 4.1 | 3.0 | 0.05 | 3.1 | 2.8 | 3.0 | | | 8 | squivalents | Chio-
rids
(Ci) | NILES (S | 100 | 2.60 | 80 | 2.31 | 2.40 | 1.83 | 1.61 | 36 | 61 | 1.86 | 2.09 | 92 2.60 | | | | <u> </u> | Sul -
fots
(SO ₆) | K NEAR | 88 | 80 | 65 | 47 | 64 | 1.37 | 44 0.52 | 44 0.92 | 44 | 33 | 47
0.98 | 1.04 | | | | constituents | Bicar-
bonate
(HCO _S) | ALAMEDA CREEK NEAR NILES | 3.47 | 3.61 | 3.31 | 176 | 3.67 | 3.39 | $\frac{201}{3.29}$ | 176 | 2.85 | 79 2.93 | 2.80 | 2.82 | | | | Mineral can | Carbon-
ofe
(CO _S) | ALANG | 0.23 | 7 0.23 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | M | Potas-
srum
(K) | | 4.0 | 0.11 | 3.7 | 3.9 | 4.6 | 3.1 | 3.4 | 3.0 | 0.06 | 3.1 | 3.1 | 3.3 | | | | | Sodium
(Na) | | 3.39 | $\frac{71}{3.09}$ | 2.70 | 60 | 61 2.65 | 2.26 | 1.91 | 4.2 | 44 | 47 | 2.35 | 2.87 | | | | | Magne-
sium
(Mg) | | 25 2.06 | 29.2 | 25 2.08 | 1.78 | 2.24 | 25 2.06 | 23 | 1.60 | 1.57 | 19 | 1.50 | 20 | | | | | Calcium
(Co) | • | 3.19 | 55 | 2.35 | 2.00 | 2.50 | 2.50 | 2.20 | 38 | 1.85 | 38 | 38 | 38 | | | | | I a | | 9.4 | 7.0 | 0.8 | 7.6 | 7.7 | 4.0 | 7.8 | 8.0 | 8.0 | 8.1 | 8.1 | 8.2 | | | | Specific | conductance
(micromhos
at 25°C) | | 845 | 822 | 708 | 979 | 728 | 663 | 597 | 538 | 547 | 574 | 592 | 661 | | | | | Dissolved Conygen (10 ppm % Sof | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | - | | Dischorgs Temp
in cfs in of
Mean | | 21 | 16 | 20 | 19 | 23 | 17 | 21 | 28 | 28 | 25 | 22 | 35 | | | - | _ | Dote
ond tims
sampled
P.S.T. | | 6/1-9/63 | 6/10-22/63 | 6/23-30/63 | 7/1-10/63 | 7/11-20/63 | 7/22-31/63 | 8/1-10/63 | 8/11-20/63 | 8/21-31/63 | 9/1-10/63 | 9/11-20/63 | 9/21-30/63 | | o Field pH. Loboratory pH. 32505-D-8 6-61 200 SPO Sum of colcium and magnesium in opm. In a compare (Co), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr*⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Inon (Fe), aluminum (Al), arsenic (As), capper (Co), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr*⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Annual median and ronge, respectively, Calculosted from enalyses of duplicate monthly samples mode by California Department of Public Health, Division of Laboratories, or United Stores Public Health, Service (USM); Juned Stores Department of the Interior, Surveu of Racifomenton (USBR), United Stores Public Health, Service (USMHS); San Bemardino County Flood County Flood Marrapoliton Went Public Standard California (MAD), Las Angeles Department of More and Power (LADMP); City of Las Angeles, Department of Public Health (LBDPH); Teamnol Testing Laboratories, Inc. (TLL), or California Department of Meric Resources (DHR), as indicated. | 2) | | |-----------|--| | (NO. | | | RECION | | | BAX | | | FRANCISCO | | | SAN | | | | | _ | | | Specific | | | | | Mins | Minaral cons | constituents | Ē | ports pa | | million
per million | u c | | | Totel | | | | L | - | | |---------------------|----------------|-------|------|----------------|---|-------|-----------------|-----------------------|------------------|-------------|--------------|---------------------|---------------|-----------------|----------------------|------------------------|-----------|-------------------------------|----------------------------|------------------|---------|----------------------|----------|-------------------------|-------|------------------| | ond tims
sompled | Dischorge Temp | Te mp | | ygen
10, ca | conductance
(micromhos
at 25°C) a | E o | Coterum
(Ca) | Mogne-
sum
(Mo) | Sodium P
(Na) | Potos- C | Corbon - E | Brcor-
bongte | Sul - | Chio- | | - only | Boron Sie | Silico
(S.O ₂) | Other constituents | solids
in com | 1 0 0 E | Hordness
es CoCOs | - Piq so | Coliform
y
MPN/ml | | Analyzed
by I | | | | 1 | E 0d | 70201 | | ۵ | | (Max) | | 2 | - 1 | | \rightarrow | - | - | | + | - | | | 1 | Edd | E do | + | + | T | | | | | | | | | | | | | ALAMED | ALANEDA CREEK NEAR | NEAR NE | NILES (STA. 73) | 1. 73) | | _ | | | | _ | | | _ | _ | _ | | 10-1-62 | 39 | 69 | 9.8 | 9 108 | 585 | 8.0 | | 3.040 | 3.00 | | 00.00 | 2,39 | | 2.45 | _ | 01 | 5.0 | _ | | 3520 | 20 | 152 | 32 | 90 2,400. | | 0.568 | | 11-7-62 | 4.5 | 28 | 10.7 | 7 104 | 797 | 8.0 | | 4.20c | 3.65 | | 0.00 | 3.16 | | 3.27 | | J | 0.4 | | | 480° | 97 | 210 | 52 | 25 | 6.2 | | | 12-5-62
1020 | 2.1 | 20 | 11.2 | 2 99 | 910 | 8 8 | | 5.450 | 3.92 | | 00.00 | 253 | | 3.22 | | 9 | 7.0 | | | 548° | 77 | 273 | 99 | ν, | 2.8 | | | 1-10-63 | 77 | 5 7 | 14.3 | 3 118 | 1,180 | 8,3 | | 7.37€ | 110 | | 0.00 | 332 | | 166 | | 9 | 9.0 | | | 710° | 39 | 368 | 96 | 15 | 62. | | | 2-5-03
1140 | 120 | 28 | 10.3 | 3 100 | 512 | 7.8 | | 3.800 | 34 | | 00.00 | 3,06 | | 34 | | 01 | 0.2 | A8S | = 0.10 | 308° | 28 | 190 | 37 | 1,300. | ,300. | | | 3-6-63
1930 | 199 | 52 | 14.4 | t 130 | 883 | 8.3 | | 5.300 | 3,39 | | 0.00 | 3.90 | | 2.96 | | | 9.0 | ABS | · 0.10 | 532" | 39 | 265 | 70 | 7 7 | 230. | | | 4-8-63 | 366 | 59 | 10.0 | 96 | 457 | 8 . 1 | | 3.690 | 26 | | 0,00 | 3.34 | | 19 | | | 0.3 | ABS | | 275° | 23 | 184 | | 50 62 | 230. | | | 5-14-63 | 33 | 99 | 9.5 | 5 101 | 1,010 | 9° 6 | 4.54 | 32 2,00 | 3.83 | 4.2 | 0.87 | 282 | 131 | 2.71 | 0.00 | 0.02 | 8,0 | ABS
PO _{ti} | = 0.00 | 6218 | 35 | 357 | 81 | 2 | 1,3 | | | 0-5-63 | 12 | 72 | 12.0 | 0 136 | 806 | 8.7 | | 5.446 | 68 2.96 | | 16 | 3.54 | | 2.54 | | 9 | 8.0 | VBS | ~ 0 20 | 4856 | 35 | 272 | 69 | 10 2: | 6.2 | | | 7-1-63 | 34 | 99 | 11.5 | 5 123 | 590 | 8.2 | | 3,44c | 2.44 | | 0,00 | 2,70 | | 69 | | Ų. | 7.0 | ABS | = 0.1 | 3596 | 41 | 172 | 37 | 6 | 21. | | | 8-6-63
1820 | 31 | 72 |
8.3 | 3 94 | 543 | 8,1 | | 3.52c | 44 | | 0.00 | 3.02 | | 56 | | 91 | D. 4 | ABS | - 0.2 | 327° | 35 | 176 | 25 | 2,400, | .2. | | | 9=4=63
1615 | 28 | 70 | 30 | 86 | 570 | 8.2 | 36 | 1.58 | 48 | 2.7 | 00.00 | 171 | 44 | 1,64 | 90.0 | 0,3 | 0,4 | 14 ABS
FO4 | - 0.02
- 0.00
- 0.05 | 3228 | 38 | 169 | 29 | 75 | 23. | | | | | | | | | | | | | _ | ARRO | ARROYO OE LA LAGURA | LAGURA | A' VERO | A' VERONA (STA. 202) | . 202) | | | | | _ | | | | | _ | | 10/1-12/62 | 10
Besta | | | | 620 | 7.8 | 32 | 1,38 | 2.91 | 3,3 | 00.00 | 14.9 | 30 0.62 | 2.71 | 0.04 | 0.0 | 0.3 | 23 Fc
Co lo | Fc = 0.00
Color = 15 | 3558 | 67 | 149 | 27 | | n ns | DSCS | | 10/13-15/62 | 169
mt.1m | | | | 376 | 7.1 | 1.35 | 0.91 | 28 | 6.8
0.17 | 00.00 | 1.97 | 37 | 28 | 0.13 | 0.03 | 5.0 | 16 Fc | Fe = 0.05
Color = 100 | 2438 | 33 | 113 | 15 | | | | | | | | 1 | | | | | | | 1 | | | | | | - | - | | | | 1 | 1 | 1 | | | | Laboratory pH Field pH Sum of calcium and magnesium in epm. except as shown. Jum of addition and magnessium in epin. 100 (20), Lond (Fe), Johannum (Al), Proceed (As), Loppor (Cu), Lead (Fb), manganese (Uni), 211C (Zn), and herovolent chromium (Cr¹⁵), reported here as 0.000 (200) Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Grovimetric determination Annual median and annye, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS), San Bernadino County Flood Maneral District Selections, Objective Objec 3 D - 23 TABLE D-2 SAN FRANCISCO BAY REGION (NO. 2) | | 7 | T | | | | | | | | | | | | | | | | |--------------|---|----|-----------|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------|------------------------|---------|----------|----------|-------------------------| | | Analyzed
by i | | | USGS | | | | | | | | | | | | | | | | ity MPN/ml | | | | | | | | | | | | | | | | | | T OF | n ppm | | | | | | | | | | | | | | | | | | | COS | | | 97 | 53 | 99 | 67 | - 61 | 42 | 104 | 137 | 57 | 77 | 0 | 0 | 12 | 13 | | | Hordr
as Co
Tatol | Ė | | 190 | 198 | 212 | 200 | 325 | 267 | 324 | 436 | 216 | 254 | 136 | 93 | 134 | 208 | | P | eod - | | | 43 | 67 | 52 | 50 | 41 | 97 | 56 | 45 | 67 | 87 | 45 | 24 | 26 | 31 | | Total | solved
solved
in ppm | | | 4388 | 4778 | 5508 | 5028 | 6738 | 6768 | 8698 | 8066 | 5248 | 6218 | | | | 3708 | | | Other constituents | | | Fe = 0.00
Color = 20 | Fe = 0.00
Color = 10 | Fe = 0.00
Color = 5 | Fe = 0.00
Color = 15 | Fe = 0.00
Color = 10 | Fe = 0.00
Color = 50 | Fe = 0.01
Color = 45 | Fe = 0.01
Color = 30 | Fc = 0.00 | Fe = 0.00
Color = 1 | | | | Fe = 0.00
Color = 35 | | | Silica
(SiO ₂) | T | | 23 | 23 | 22 | 21 | 23 | 23 | 33 | 31 | 23 | 26 | 61 | 13 | 16 | 20 | | million | Boron S
(B) (C | | | 9*0 | 0.5 | 0.4 | 1.0 | 0.8 | 8.0 | 8 | 1.3 | 0.5 | 0.7 | 4.0 | 0.2 | 0.3 | 0.5 | | per mil | Fluo-
ride
(F) | 1 | 707 | 0.02 | 0.03 | 0.07 | 0.3 | 0.8 | 0.07 | 0.13 | 0.08 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | | ا ا ا | rote
(NO ₄) | | A (SIA. | 5.6 | 7.7 | 0.10 | 8.8 | 7.9 | 35 | 51 | 37 | 9.8 | 16 | 0.10 | 3.7 | 0.08 | 9.0 | | equivalents | Chiq-
ride
(CI) | | AT VEKUNA | 2.99 | 3.78 | 161 | 144 | 168 | 148 | 266 | 271 | 148 | 171 | 1.35 | 4.8 | 3.1 | 47 | | Ē | Sul -
fate
(SO ₄) | | LAGUNA | 54 | 51 | 73 | 67 | 71 | $\frac{67}{1.39}$ | 81 | 95 | 71 | $\frac{82}{1.71}$ | 38 | 0.35 | 34 | 1.35 | | constituents | Bicor-
banate
(HCO ₃) | | DE LA | 176 | 167 | 178 | 162 | 322 | 274 | 268 | 365 | 3.18 | 3.31 | 2.79 | 113 | 149 | 3.49 | | Mineral can | Carbon-
ate
(CO ₃) | Т: | ARROYO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 0.00 | 00,00 | 0.00 | | Min | Potos-
sium
(K) | | _ | 5.4 | 4.6
0.12 | 5.9 | 5.2 | 8.8 | 18 | 3.1 | 18 | 4.8 | 0.18 | 0.26 | 3.0 | 3.2 | 0.13 | | | Sodium
(No) | | | 3.00 | 3.78 | 108 | 95 | 108 | 114 | 195 | 7.57 | 100 | 112 | 2.44 | 14 0.61 | 22 | 44 | | | Mogne-
sium
(Mg) | | | 1.8 | 22 | 24 | 1.85 | 3.06 | 35 | 55 4.53 | 5.18 | 24 | 31 2.57 | 2.72 | 1.86 | 1.18 | 23 | | | Calcium
(Ca) | | | 2.0 | 40 2.00 | 45 | 43 | 3.44 | 2.50 | 39 | 3.54 | 2.35 | 2.50 | | | 30 | 45 | | | 표 이 스 | | | 7.5 | 7. | 7.5 | 7.9 | 7.9 | 7.5 | 7.2 | 7.9 | 8.2 | 8.3 | 7.0 | 7.6 | 7.8 | 7.7 | | Specific | (micramhos
at 25°C) | | | 730 | 810 | 945 | 978 | 1,130 | 1,090 | 1,580 | 1,630 | 906 | 1,050 | 522 | 239 | 362 | 602 | | | Ossolved
axygen | _ | | | | | | | | | | | | | | | | | | Ten
For | 1 | | | | | | | | | | | | | | | | | | Dischorge Temp | | | 9.3 | 12 | 12 | 13 | 2.5 | 8.4 | 5 | 2.5 | 15 | 6.7 | 140 | 8,070 | 119 | 37 | | | and time | | | 10/16-31/62 | 11/1-12/62 | 11/13-22/62 | 11/23-30/62 | 12/1-10/62 | 12/11-19/62 | 12/20-31/62 | 1/1-12/63 | 1/13-18/63 | 1/19-30/63 | 1/31/63 | 2/1-2/63 | 2/3-5/63 | 2/6-12/63 | o Freld pH Sum of calcium and magnesium in epm. b Laboratory pH E. Sum of colcum and magnessym in epm. Some (Ea), lead (Pb), manganese (Un), 2 inc (Zn), and hexavalent chramium (Cl, "), reparted hare as $\frac{0.0}{0.00}$ except as shown. Derived from canductivity vs TDS curves Determined by addition of analyzed constituents Gravimetric determination. Annuel madion and angue, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division at Laboratories, or United States Debtic Health Service. Mannual analysess made by United States Geological Servey, Quality of Water Branch Banch Department of the Instead of Reclamation (USBR); United States Debtic Health Service (USBR); Son Bernardino Canny Flood Court District (ESCD), Mannopolism Water Datarel of Swatern Collegen Observance of Water and Power (LADWP), City of Las Angeles, Department of Public Health (LADPH); City of Lang Beech, Department of Angeles, Department of Debts (Public Court of | _ | _ | | | | | | | | | | | | | | | | |-------------------|-------------------------|--|--------------------------------|------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------------|---|-------------------------|-------------------------| | | | Anolyzed
by I | | USGS | | | | | | | | | | | | | | | | bid - Coliform
Ify MPN/mi | | | | | | | | | | | | | | | | | T 10 | - × 6 | | | | | | | | | | | | | | | | | | PP C S | | 9 | 37 | 80 | 83 | 69 | 18 | 35 | 14 | 26 | 28 | ======================================= | 62 | 09 | | | | | | 140 | 242 | 355 | 244 | 235 | 179 | 220 | 181 | 216 | 280 | 391 | 193 | 191 | | L | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 28 | 33 | 70 | 67 | 47 | 32 | 28 | 28 | 26 | 29 | 42 | 897 | 777 | | L | Totol | solids
In ppm | | 2308 | 429 ⁸ | 7148 | 6168 | 565 ⁸ | 323 ⁸ | | 300g | 339 ⁸ | 4528 | 7978 | 461 ⁸ | 4338 | | | | Other constituents | | Fe = 0.02 | Fe = 0.00
Color = 20 | Fe = 0.00
Color = 17 | Fe = 0.01
Color = 13 | Fe = 0.02
Color = 30 | Fe = 0.05
Color = 40 | Fe = 0.04
Color = 22 | Fe = 0.06
Color = 45 | Fe = 0.02
Color = 18 | Fe = 0.00
Color = 8 | Fe = 0.01
Color = 14 | Fe = 0.01
Color = 12 | Fe = 0.06
Color = 15 | | | Ì | Silica
(SiO ₂) | | 17 | 18 | 19 | 19 | 16 | 16 | 16 | 19 | 17 | 16 | 18 | 21 | 24 | | | le l | Boron
(B) | 2) | 9.0 | 0.5 | 6.0 | 0 8 | 0.7 | 0.5 | 0.5 | 0.3 | 0.3 | 0.4 | 6.0 | 0.5 | 9.0 | | million. | ier mil | Fluo-
ride
(F) | STA. 20 | 0.07 | 0.3 | 0.07 | 0.01 | 0.4 | 0.07 | 0.0 | 0.2 | 0.0 | 0.3 | 0.3 | 0.0 | 0.0 | | porte per million | equivolente per million | rrote
(NO _S) | RONA (S | 0.00 | 0.11 | 9.2 | 15 | 0.32 | 0.11 | 4.5 | 0.08 | 3.5 | 4.4 | 0.23 | 9.3 | 0.16 | | l o | equivo | Chlo-
ride
(Cl) | KA AT VI | 19 | 1.66 | 3.72 | 150 | 3.55 | 37 | 44 | 26 | 35 | 36 | 4.37 | 3.10 | 2.74 | | | <u> </u> | Sul -
fate
(SO _e) | LA LAGUNA AT VERONA (STA, 202) | 33 | 1.67 | 3.06 | 2.10 | 1.81 | 1.04 | 63 | 1.00 | 55 | 83 | 3.19 | 1.39 | 1,39 | | | Conetituente | Bicar -
bonote
(HCO ₃) | ARROYO DE | 164 | 250 | 335 | 3.21 | 3.33 | 3.21 | 3.70 | 3.34 | 3.80 | 4.44 | 341 | 160 | 2.62 | | | Winerol con | Corbon-
ote
(CO ₅) | ARR | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | 1 | MID | Potas-
eium
(K) | | 3.3 | 4.3 | 6.6 | 5.4 | 0.19 | 3.5 | 3.0 | 3.4 | 3.0 | 3.0 | 6.8 | 3.7 | 3.8 | | | | Sodium
(Na) | | 25 | 57 | 4.87 | 1112 | 99 | 39 | 39 | 33 | 36 | 53 | 5.70 | 3.65 | 3.13 | | | | Mogne-
stum
(Mg) | | 15 | 28 | 3.76 | 2.29 | 2.20 | 20 | 25 2.05 | 1.67 | 2.07 | 32 2.67 | 50 | $\frac{22}{1.81}$ | 22 | | | | Calcium
(Ca) | | 31 | 50 | 3.34 | 2.59 | 2.50 | 39 | 2.35 | 39 | 2.25 | 2.94 | 3.74 | 41 2.05 | 41 2.05 | | | | I a b | | 8.0 | 7.9 | 7.9 | 7.4 | 7.4 | 7.8 | 7.5 | 7.6 | 7.8 | 7.9 | 8.2 | 7.6 | 8.0 | | | Specific | (micromhou of at 25°C) | | 376 | 715 | 1,150 | 966 | 921 | 517 | 582 | 482 | 554 | 753 | 1,290 | 798 | 713 | | | | Dissolved
osygen
ppm %So | | | | | | | | | | | | | | | | | | Te an | | | | | | | | | | | | | | | | | | Oschorge Temp | | 181 | 29 | 9.2 | 17 | 18 | 81 | 15 | 128 | 58 | 15 | 9.0 | 21 | 19 | | | | Oote
ond time
eampled
P.S.T | | 2/13-18/63 | 2/19-22/63 | 2/23-28/63 | 3/1-12/63 | 3/13-24/63 | 3/25-30/63 | 4/1-3/63 | 4/7-20/63 | 4/21-30/63 | 5/1-8/63 | 5/9-25/63 | 5/26-31/63 | 6/1-10/63 | b Laboratary pH. a Field pH. Sum of colcium and magnessum in spm. Iron (Fe), alumnium (A1), argament (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and
hexavalent chromium (C1*6), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of colcium and magnesium in epm. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Annual median and range trespectively. Calculated from analyses of duplicate roughly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Mirrard analyses made by United States Ceological Survey, Quality of Meter Branch United States Department of the International Programment of Meter and Programment of Meter and Programment of Meter and Programment of Meter and Programment of Public City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles, Department of Angeles, Department of Angeles, Department of Angeles, Department of States (LADPH); City of Las Angeles, Department of Angele ### TABLE D-2 ## ANALYSES OF SURFACE WATER SAN FRANCISCO BAY REGION (NO. 2) | | | P | | | | _ | | | _ | | | | | _ | | _ | | |-------------------|----------------------|--|--|----------------------------|-------------------------|---|---|---|---------|---------|---------|------------|------------------|------------------|------------------|---------------------------------------|--------| | | | Analyzad
by 1 | | USGS | | | | | | | | | | | | | | | | | Hardnsss bid - Caliform os CaCO ₃ ity MPN/ml Tatol NC ppm | | | | | | | | | | | | | | | | | | Tor | - piq
Light | | | | | | | | | | | ۳ | - | 07 | 110 | S | | | | OCO3
N C | | 69 | 94 | | | | | | | 65 | 22 | 17 | 11 | 14 | 15 | | L | | | | 254 | 180 | | | | | | | 416 | 189 | 229 | 167 | 227 | 222 | | L | Par | 2 0 d - | | 38 | 40 | | | | | | | 28 | 19 | 20 | 15 | 17 | 22 | | L | Tatol | solids
solids
in ppm | | 5058 | 3758 | | | | | | | 979 | 268 ^e | 325 ^e | 221 ^e | 3088 | 318e | | | | Other constituents | | 21 Fe = 0.03
Color = 12 | Fe = 0.04
Color = 11 | | | | | | | | | | Ac = 0.01 | 15 A8S = 0.1
PO ₄ = 2.1 | | | | | an Silico
(SiO ₂) | | 0.8 | 9. 4
5.0 | | | | | | | 7 | 5:0 | 5.0 | 70 | 1 1 | 0.5 | | ign | par million | Baran
(B) |
A. 202 | | | _ | ~ | _ | | | | <i>-</i> - | ol | ol | al | | ol | | ports per millian | psr | Fluo-
ride
(F) |
NA (ST. | 0.03 | 3 0.01 | | IA. 71 | _ | | | | | | | | 0.3 | | | orfs p | equivalents | rrate
(NO ₃) | I VERO | 6.5 | 0.13 | _ | ORE (S | | | | | | | | | 0.01 | | | | equiv | Chio-
ride
(CI) | AGUNA A' | 3.02 | 2.17 | | LIVERM | _ | | | | 76 | 0.39 | 0.48 | 0.17 | 0.37 | 0.34 | | | = | Sul -
fots
(504) | E IA I | 74 | $\frac{54}{1.12}$ | | E NEAR | | | | | | | | | 1.06 | | | | 371706713 | Bicor-
banate
(HCO ₃) | ARROYO 0E LA LAGUNA AT VERONA (STA. 202) | 3.70 | 2.67 | | EL VALL | | | | | 397 | 3.34 | 3.90 | 3.11 | 3.97 | 3.93 | | | Minsral constituents | | -4 | 0.00 | 0.00 | | ARROYO DEL VALLE NEAR LIVERMORE (STA. 71) | | | | | 15 | 0.00 | 0.33 | 00.00 | 0.30 | 0.20 | | 3 | Min | Polas- Corban-
sium ate
(K) (CO ₃) | | 5.4 | 3.6 | | | _ | | | | | | | | 0.05 | | | | | Sodium
(No) | | 74 | 56 | | | | | | | 3.31 | 20 | 26 | 13 0.57 | 0.96 | 1.26 | | | | Magne- S
Sium
(Mg) | | 30 | 21 | | | | | | | 8.320 | 3.78 | 4.580 | 3.349 | 21 | 4.440 | | | | Calcium (Ca) | | 53 | 1.90 | | | | | | | | | | | 2.79 | | | - | _ | |
 | 7.0 | 0.8 | | | _ | | | | 7.8 | 8.0 | 8.5 | 8.2 | 8.3 | 80 80 | | | acific. | conductance pH
(micromhos
at 25°C) | | 843 | 626 | | | | | | | 1,050 | 436 | 528 | 359 | 967 | 517 | | - | Sp | |
 | | | | | | | | | 70 1 | 87 | 96 | 701 | 901 | 9.5 | | | | Dissolved
oxygen
ppm %Sat | | | | | | | | | | 0.8 | 0.6 | 0.01 | 10 4 10 | 9.5 | 8 2 | | - | | | | | | | | | | - | | 8 7 | 95 | 54 10 | 65 | 89 | 69 | | | | Dischorge Tamp | | 8.1
mean | 12
mean | | | | Dry | Ponded | Ponded | 0.7 | 0.9 | 4.8 | 202 | 21 | 5.0 | | | | ond fine
sompled
P.S.T | | 6/11-20/63 | 6/21-30/63 | | | | 10-1-62 | 11-5-62 | 12-5-62 | 1-10-63 | 2-5-63 | 3-6-63 | 4-8-63 | 5-14-63 | 6-5-63 | a Field pH Derived from conductivity vs TDS curves except as shown b Labarotory pH c Sum of colcium and magnesium in epm. Determined by addition of analyzed constituents. Gravimetric determination h Annual median and range, respectively. Calculated from analyses and displicate manthly samples made by, California Department of Public Health, Division of Laboratories, or United States Geological Survey, Chality of Weste Broads (USSS), United States California (WIND), Les Angeles as Department in the Interview, Survey of Recipionian (WIND), Les Angeles as Department of Matter and Power (LDMP), City of Los Angeles, Department of Public Health (LADPH), Entry of Los Angeles, Department of Public Health (LADPH), City of Los Angeles, Department of Public Health (LADPH), City of Los Angeles, Department of Matter Departmen | Г | | 7 | | | | | | | | | | | | | | | |-------------------|--------------|---|------------------|--------|---------|--------------------------------------|------------|----------------|-----------------|--------------|-----------|--|--|--------------------------------------|-------------------------------------|-------------------------------------| | | | Anolyzed
by i | | USGS | | | | DWR | | | | | | | | | | | | bid - Coliforni
ity
n pom | | | | | | | | | | | | | | | | | T. (- | - bid
- ty
moon | | ~ | 2 | 2 | | | | | | | | | | | | Γ | | COS
COS
PP C | | 25 | -4 | 20 | | 30 | 0 | 0 | 0 | 31 | 0 | 0 | 22 | 0 | | L | | | | 258 | 289 | 336 | | 187 | 270 | 307 | 139 | 138 | 292 | 264 | 83 | 146 | | | | 0 8 0 g | | 23 | 27 | 28 | | 09 | 72 | 76 | 70 | 58 | 75 | 80 | 48 | 84 | | L | Total | solids
in pom | | 378° | 454e | 5148 | _ | 4838 | 1,2908 | 1,5308 | 585 | 409 | 1,321 | 1,5108 | 1988 | 1,050 | | | | Other constituents | | | | As = 0.00
A&S = 0.0
PO4 = 0.05 | | ABS = 0.0 | ABS = 0.0 | A8S = 0.0 | ABS = 0.0 | ABS = 0.02
Cu = 0.00
Zn = 0.00 | $C_{U} = 0.00$
$Z_{D} = 0.00$
$F_{C} = 0.01$ | A8S = 0.01
Cu = 0.00
Zn = 0.00 | ABS = 0.0
Cu = 0.00
Zn = 0.00 | ABS = 0.0
Cu = 0.00
Zn = 0.00 | | | | Silico
(SiO ₂) | | | | 23 | 201) | 12 | 18 | 7.5 | 16 | 174 | 17 | 14 | 17 | 1.5 | | | ion | Boron (B) | | 9.0 | 8.0 | 1.1 | (STA. | 1.2 | 7.4 | 4.8 | 2.4 | 0.92 | 8.6 | 9.5 | 0.14 | 6.9 | | million | per million | Flua-
ride
(F) | (17 | | | 0.3 | AQUEDUCT | 0.0 | 2.0 | 0.09 | 0.3 | 0.0 | 0.08 | 0.09 | 0.00 | 0.02 | | ports per million | | NI-
trote
(NO ₃) | (STA. 71) | | | 0.5 | BAY | 0.00 | 9.6 | 3.0 | 0.02 | 0.03 | 4.5 | 5.1 | 0.02 | 0.0 | | e e | equivalents | Chlo-
ride
(CI) | NEAR LIVERMORE | 28 | 0.34 | 56 | OF SOUTH | 162 | 349 | 11.90 | 4.23 | 3.04 | 374 | 442 | 48 | 9.51 | | | <u>.</u> | Suf -
fots
(SO ₄) | NEAR LI | | | 76 | | 1.87 | 2.35 | 2.71 | 0.52 | 73 | 2.27 | 2.54 | 30 | 2.04 | | | constituents | Bicor-
bonots
(HCO ₃) | L VALLE | 4.52 | 348 | 385 | ALTAMONT I | 180 | 8.33 | 650
10.65 | 300 | 2.13 | 656 | 619 | 1.21 | 3.88 | | | Winerol con | Corbon-
ote
(CO ₃) | ARROYO DEL VALLE | 0.13 | 0.00 | 00.00 | AI | 0.20 | 0.00 | 20 0.67 | 0.00 | 0.00 | 0.00 | 35 | 0.00 | 2.70 | | 2 | Min | Potas-
sium
(K) | - w | | | 3.2 | ONT CREEK | 3.0 | 0.19 | 3.8 | 0.17 | 0.07 | 0.05 | 3.0 | 1.9 | 3.4 | | | | Sodium
(No) | | 36 | 50 2.18 | 62 2.70 | ALTAMONT | 5.83 | 338 | 462
20.10 | 6.83 | 3,83 | 412
17.92 | 492 | 36 | 351 | | | | Mogne-
sium
(Mg) | | 5.160 | 5.78 | 3.38 | | 22 | 3.59 | 58 4.73 | 20 | 15 1.26 | 3.79 | 3.92 | 8.6 | 2,37 | | | | Colcium
(Co) | | | | 3.34 | | 38 | 36 | 28 | 23 | 30 | 41 2.04 | 1.35 | 19 | 0.55 | | | | Ŧ. | | 8.2 | 7.8 | 7.2 | | 8.5 | 8.3 | 8.5 | 7.9 | 7.9 | 8.2 | 8.6 | 7.9 | 9.2 | | | Specific | (micromhos
of 25°C) | | 615 | 739 | 857 | | 1,000 | 2,170 | 2,480 | 984 | 722 | 2,290 | 2,520 | 345 | 1,830 | | | | 1 = 1 | | 98 | 80 | 94.1 | | | | | | | | | | | | | | Disso
oxy
ppm | | 8.2 | 7.0 | 6.3 | | | | | | | | | | | | | | Temp
in oF | | 63 | 71 | 70 | | | | | | | | | | | | | | Dischargs
in cfs | | 1.6 | 0.7 | 0.1 | | | | | | 6.0 | | | | | | | | ond time
sompled
P.S.T. | | 7-1-63 | 8-5-63 | 9-3-63 | | 3-1-63
1515 | 3-18-63
1615 | 4-1-63 | 4-15-63 | 5-27-63
1230 | 6-10-63 | 7-8-63 | 7-22-63 | 8-5-63
1355 | b Laboratory pH Field pH 육 Sum of colcium and magnesium in epm. Iran (Fe), alumnum (Al), arsanic (As), capaer (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Gr⁻¹), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Grovimetric determination. Anothmentic eventualistic expension and years of duplicate monthly samples made by Californio Department of Public Health, Division of Laboratories, or United Stores Public Health Service. Anothmentic eventualistic expension of March Stores Control of Waste Bornerick (1984); John Bornerick Department of Health Service (1984); Son Bornerick County Flood Control books and County Eload E SAN FRANCISCO BAY REGION (NO. 2) | | | | - | | | | _ | | | | | | | | | |
_ | _ | |-------------------|-------------------------|--------------------------------------|---------------------|------------------------------------|-----------|-----------|--------------------------------------|------------------|---------|--------------|--------|----------|----------------|-----------------|--------------------|--------|-------|---| | | | by 1 | | OWR | | | | USGS | | | | | | | | | | | | | 4 | os CoCO ₃ 11y MPN/mi by i | | | | | | 620. | 50. | 21. | 6.2 | 23. | 6.2 | 23. | 0.21 | 62. | | | | | - 1 | - ×- | | | | | | 4.5 |
400 | 200 | 30 | 240 | 420 | 95 | 20 | 55 | | | | Г | - | og l | 2 E | 19 | | | | 171 | 26 | 24 | 27 | 12 | 15 | 23 | 18 | 2 | | | | | 3 | 000 | pom pom | 91 | 95 | 134 | | 489 | 83 | 117 | 120 | 87 | 95 | 110 | 126 | 120 | | | | | Per | - E | | 4 | | | | 14 | 17 | 51 | 18 | 17 | 15 | 18 | 14 | 14 | | | | | Total | Bolved | urdd ui | 2168 | 2188 | 3428 | | 611 ^e | 124e | 1726 | 1798 | 132 | 142 | 153 | 1908 | 173 | | | | | | Other constituents | | 201) ABS = 0.0 Cu = 0.03 Zn = 0.00 | ABS = 0.0 | ABS = 0.0 | | | | | | | | | 19 PO4 = 0.10 | | | | | | ı | Silica | 100 | (STA. | | | | | | | | | | | 19 | | | | | | 5 | Boron | 6 | D.18 | | | | 0.3 | 0.0 | 0.1 | 0.0 | 0.2 | 0.3 | 0.1 | 0.0 | 0.1 | | | | ports per million | equivalents per million | Fluor | (F) | 3AY AQUEDUCT (STA.
0.10 0.18 17 | | | . 74) | | | | | | | | 0.03 | | | | | rts per | lents | - Ni- | (NO3) | 0.6
0.01 | | | VIS) SC | | | | | | | | $\frac{1.7}{0.03}$ | | | | | od | equiva | Chio- | ĵ | 47
1.32 | 52 | 90 | OS CAT | 0.71 | 5.8 | 6.8 | 8.8 | 5.2 | 0.15 | 5.1 | 6.2 | 5.2 | | | | | | Sul - | (80%) | 26
0.54 | 0.56 | 42 | NEAR I | | | | | | | | 0.56 | | | | | | Silent | Bicor- | (HCO ₃) | 1.44 | | | S CREE | 388 | 1.15 | 1.87 | 114 | 91 | 1.61 | 106 | 132 | 136 |
 | | | | Minst di Constituellis | | (co) | CREEK 0.00 | | | LOS GATOS CREEK NEAR LOS GATOS (STA. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | | | | | MINIS | <u>.</u> | (K) | ALTAMONT
1.8
0.05 | | | | | | | | | | | 0.04 | | | | | | | - | (ON) | 34 N | | | | 36 | 7.5 | 9.3 | 12 | 8.2 | 7.8 | 11 | 9.8 | 9.3 | | | | | | Magne- S | (6M | 10 | 1.90° | 2.68c | | 9.78c | 1.66c | 2.34c | 2.40c | 1.740 | 1.900 | 2.20c | 0.92 | 2.400 | | | | | | Calcium | (0) | 1.00 | | 101 | | 100 | | | [6 | 14 | | 104 | 32 | 164 |
 | | | \vdash | | Į | | 7.7 | | | | 8.0 | 7.4 | 7.6 | 7.4 | 7.7 | 7.7 | 7.5 | 8.0 | 8.5 | | | | - | scific | (micromhos | S | 367 | 375 | 582 | _ | 960 | 195 7 | 270 | 281 7 | 208 | 224 | 240 | 285 | 272 | | | | - | Sp | | Jog
Og | | | | _ | 76 | 06 | 92 | 97 | E | 86 | 66 | 66 | 100 | | | | | | Dissolved
oxygen | ppm %Saf | | | | | 8.7 | 6.9 | 9.6 | 11.0 | 10.4 103 | 10.5 | 10.5 | 10.1 | 10.6 | | | | - | | | | | | | | 65 | 09 | 53 | 49 1 | 58 1 | 53 1 | 54 1 | 57 1 | 54 | | | | - | | Orschorge Temp | | | | | | 9.0 | 3.0 | 37 | 105 | 300 | 53 | 250 | ถ | 52 | | | | - | | ond time | P.S.T | 8-19-63
1330 | 9-3-63 | 9-30-63 | | 10-3-62 | 11-7-62 | 12-4-62 2000 | 1-9-63 | 2-7-63 | 3-6-63
1830 | 4-10-63
1145 | 5-16-63 | 6-4-63 | | | 8 Laborotory pH. Sum of colcium and magnesium in epm. Sum of colcium and magnessum in teym. I end (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Gr *6), reparted here as $\frac{0.0}{0.00}$ except as shown. Iron (Fe), aluminum (Al), orsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Gr *6), reparted here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves Determined by oddition of analyzed constituents. Gravimetric determination. Avail and door and strong the Strate Section of Applicate monthly samples made by California Department of Public Health, Division of Laboratorias, or United States Public Health Service. Manuel analyses made by United States Geological Survey, Opolity of Water Breach (USSA), United States Department of Health States (USPAS), San Bernardino County Flood Manuel analyses made by United States Public Manuel California (WMO): Las Anageles, Oponiment of Water and Power (LADWP), City of Las Anageles, Department of States Public Health (LADPP), City of Las Anageles, Department of Water Resources (UWR); as indicated the Health (LADPP); Termon Transport (LADPP), City of Las Anageles, Department of Water Resources (UWR); as indicated the Health (LADPP); Termon Transport ### ANALYSES OF SURFACE WATER SAN PRANCISCO BAY REGION (NO. 2) | | | Anolyzed
by 1 |
 | USCB | | | | | | uscs | | | | | | | |-------------------|-------------------------|---------------------------------------|--|--------|------------------|-------------------------|---|-------------------------------------|-----------------|---------|---------|--------|----------------|------------------|--------|-----------------| | | - | bid - Coliform
ity MPN/mi |
 | ដូដ | 1.3 | 2.3 | - | | | 23. | 6.2 | 0.045- | 2.3 | 6.2 | 230, | 2.3 | | | 5 | - Mad | | 20 | 20 | 25 | | | | ۰ | - | - | 2 | 140 | 70 | 50 | | | | S O E | | 19 | 27 | 26 | | | | 38 | 42 | 41 | 32 | 12 | 19 | 11 | | | | Total
Ppm
ppm | | 122 | 144 | 157 | | | | 283 | 339 | 348 | 341 | 84 | 126 | 118 | | | Per | Bod - | | 21 | 14 | 14 | | | | 19 | 20 | 23 | 18 | 29 | 19 | 20 | | | Total | solids
m ppd ui | | 176 | 197 ^e | 2298 | | | | 371 | 4476 | 484° | 44.7e | 122 ^e | 176 | 1748 | | | | Other constituents | | | An = 0.02 | AB8 = 0.0
Po4 = 0.00 | | _ | | | | | | | | ABS = 0.01 | | | | (SiO ₆) | | | | 15 | | | | | | | | | | 12 | | | lion | Boron
(B) | | 0.0 | 0.1 | 0.1 | | | | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.1 | | Pillion | 10 L | Flug-
ride
(F) | (7/ | | | 0.03 | | | | | | | | | | 0.02 | | parte per million | equivalents per million | trote
(NO ₃) | (STA. | | | 0.07 | - | . 82) | | | | | | | | 3.2 | | bod | equival | Chlo-
ride
(Cl) | LOS CATOS CRREK NEAR LOS CATOS (STA. 74) | 7.0 | 0.20 | 0.21 | | COYOTE CREEK NEAR MADRONE (STA. 82) | | 0 28 | 33 | 1.24 | 0,76 | 6.5 | 9.1 | 8.0 | | | = | Sul -
fate
(SO _e) | NEAR LC | | | 40 | | AR MADB | | | | | | | | 30 | | | BTITUBUTE | Bonate
(MCO ₃) | S CRREK | 126 | 2.25 | 2.62 | | CRKEK NR | | 283 | 349 | 374 | 377 | 1.44 | 2.15 | 2.15 | | | Minardi constituente | Carbon-
ate
(CO ₃) | OS CATO | 0.00 | 3 0.10 | 0.00 | | COYOTE | | 0.27 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 | 00.0 | | | Wil. | Polos-
e:um
(K) | | | | 0.02 | | | | | | | | | | 0.06 | | | | Sodium
(Na) | | 9.8 | 0.48 | 0.52 | | | | 31 | 39 | 47 | 34 | 0.70 | 0.61 | 0.61 | | | | Magna-
sium
(Mg) | | 2.440 | 2.889 | 1 18 | | | | 5.66 | 6.780 | 96.9 | 6.820 | 1.68 | 2.52 | 0.96 | | | | Calcium
(Ca) | | | | 39 | | | | | | | | | | 1.40 | | | | r olo | | 8.2 | 7.8 | 8.2 | | | | 8.4 | 8.3 | 8.1 | 8.0 | 7.6 | 8.1 | 8.0 | | | Specific | conductance
(micromhoe
of 25°C) | | 277 | 309 | 350 | | | | 622 | 748 | 810 | 749 | 204 | 295 | 289 | | r | | gen () | | 86 | 86 | 96 | | | | 117 | 73 | 120 | 61 | 66 | 110 | 110 | | | | Discolved
oxygen
ppm %Sat | | 10.3 | 9.5 | 9 | | | | 11.3 | 7.9 | 14.3 | 6.2 | 10.2 | 11.0 | 10.8 | | r | | | | 55 | 61 | 89 | | | | 62 | 53 | 97 | 58 | 57 | 59 | 61 | | | | Orachorge Temp | | 95 | 99 | 69 | | | Dry | 16 | 1.2 | 1.1 | 0.5 | 25 | 12 | 20 | | | | ond time
compled
P S.T | | 7-2-63 | 8-6-63 | 9-5-63 | | | 10-1-62
1510 | 11-5-62 | 12-3-62 | 1-7-63 | 2-5-63
1300 | 3-4-63 | 4-8-63 | 5-14-63
1530 | Loborotory pH Sum of calcium and magnesium in epm. Sum at colcium and magnesium in Apm. I end (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr.*), reported here as 0.0 except as shown. Iron (Fc), alumnium (A1), assentic (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), assentic (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (A1), assentic (A2), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr.*), reported here as 0.00 except as shown. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Annual median and ranges respectively. Calculated from analyses of duplicate monthly samples made by California Department of Poblic Health, Division of Laboratories, or United States Debits. Health Service. Mineral analyses made by United States Caciografied Survey, Quality of Merce Branch, USCS, United States Caciografied TABLE D-2 SAN FRANCISCO BAY REGION (NO. 2) | Total Continue C | |
--|--| | Property Constituents Property Prope | | | Property part miles | | | Property part miles | | | Property part miles | | | Point Continue C | | | Point Continue C | | | Points par million | | | Ports Constituents in Ports Part P | | | Propagation | | | Property | | | Munural constituents in Peros. Corbon Bicor Suj. Co. C | | | Munural constituents in Peros. Corbon Bicor Suj. Co. C | | | MAINTENE OF O O O O O O O O O O O O O O O O O O | | | MAINTENE OF O O O O O O O O O O O O O O O O O O | | | MANAMAN (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C | | | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | Att. 0.05 124 215 215 215 215 215 215 215 215 215 215 | | | 1 10 | | | (Mw) (Mw) (Mw) (Mw) (Mw) (Mw) (Mw) (Mw) | | | Corcum Mogener (Co.) 2.405 2.4 | | | 7 - 0 - 0 - 1 - 0 - 0 | | | 99 2 3 4 8 9 1 1 1 1 1 2 5 0 0 1 2 3 2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 103 103 103 103 103 103 103 103 103 103 | | | 01886
0889
10.5
10.5
9.5 | | | F E 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 0 ond inne
sompled
P.S.T
1515
1700
6-5-63
1700
6-5-63
1100 | | Field pH Derived from conductivity vs TDS curves Sum of colcum and magnessum in spm. Iron (Fe), oluminum (Al), asseric (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavialent chromium (Gr*⁶), repared here as $\frac{0.0}{0.00}$ except as shown. Sum of colcium and magnesium in epm. Laborotory pH. Determined by addition of analyzed constituents g Grovimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Ospatiment of Public Health, Division of Lebaratories, or United States Public Health Service. ¹ Mineral analyses made by United States Geological Survey, Quality of Water Bronch (USGS); United States Department of the Interior, Survesu of Reclamation (USBR); United States of Southern Coldonia (AMD), Las Anagles, Department of Water and Power (LADMP); City of Las Anagles, Department of Mater Brown (LADMP); City of Las Anagles, Department of Water Resources (DMR); as indicated. Public Health (LADPH); Terminal Testing Laboratories. Inc. (TTL); or California Department of Water Resources (DMR); as indicated. ### ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) | _ | | |
 | | | | | | | | | | | | |----------------------|---------------------------|-------------------------------|--|-----------------------------------|--|--|-----------------------------|--|--|-------------------|---------|---------|------------|--------| | | Anolyzed | | | 25g | | DAR | | DAR | | USGS | | | | | | | Tur-
bid - Coliform | | | | | | | | | 23. | 6.2 | 23. | 6.2 | 230. | | | 1 P A | n póm | | 15 | | 0.3 | | - | | 4 | 7 | 7 | 'n | 15 | | | Hordness
os CoCO. | Toto! N.C. | | 22 | | 28 | | 21 | | 20 | 30 | 21 | 30 | 34 | | L | | | | 207 | | 144 | | 137 | | 136 | 148 | 135 | 150 | 121 | | L | Cent - bos | | | 28 | | 24 | | 26 | | 30 | 27 | 31 | 26 | 22 | | | Devised in the second | abilde
in ppm | | 3908 | | 2328 | | 232 ⁸ | | 242e | 253 | 242 | 254° | 200 | | | | Other constituents | | Golor = 8:81
Ans
PO4 = 0.67 | | Color = 10
Fe = 0.01
ABS = 0.0
PO ₄ = 0.46 | | Color = 10
Fe = 0.18
ABS = 0.0
FO4 = 0.56 | | | | | | | | | 00110 | (S:0g) | | 32 | | 24 | ŝ - | 26 | | | | | | | | | | (8) | (60) | 0.13 | 30) | 0.10 | TA. 7 | 0.09 | 75) | 0.4 | 0.1 | 0.0 | 0.0 | 0.0 | | parts per million | Fluo- | (F) | (STA. | 0.02 | | 0.01 | TREES NEAR PELTON (STA. 75) | 0.03 | (SIA. | | | | | | | orts per | Z | (NO ₃) | LA CRUZ | 0.01 | A CRUZ | 0.01 | NEAR PI | 0.5 | FELTON | | | | | | | | Chlo- | (CI) | SAK SAN | 0.90 | AT SANT | 0.59 | TREES | 0.59 | RS NEAR | 28 | 24 | 0.71 | 24 | 15 | | E | | (SO.) | CREEK NE | 55 | RIVER | 0.87 | t AT BIG | 38 | BIG TRE | | | | | | | atifuent | Bicar | bonate
(HCO ₅) | BRANCIFORTE CREEK NEAR SANIA CRUZ (STA. 209) | 3.70 | SAN LORENZO RIVER AT SANTA CRUZ (STA. 230) | 141 2.31 | LORENZO RIVER | 2.31 | VER AT | 2.31 | 2.36 | 139 | 2.39 | 106 | | Mineral constituents | Carban | (CO ₅) | BRANC | 0.00 | SAN | 00.00 | N LOREN | 0.00 | SAN LORENZO RIVER AT BIG TREES NEAR FELTON (SIA. | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Mine | Potos- | (K) | | 3.1 | | 0.06 | SAN — | 0.06 | SAN LO | | | | | | | | Code | (0 N) | | 1.61 | | 0.91 | | 0.96 | | $\frac{27}{1.17}$ | 1.09 | 28 | 1.04 | 16 | | | | | | 0.85 | | 0.88 | | 5.4 | | 2.720 | 2.96€ | 2.70¢ | 3.000 | 2.420 | | | Calcum | (00) | | 3.29 | | 2.00 | | 2.30 | | | | | | | | | ž | 4 | | 8.1 | | 8.3 | | 8.1 | | 8.0 | 8.0 | 7.6 | 7.6
8.0 | 7.4 | | : | Conductance PH (micromhae | at 25°C) | | 559 | | 376 | | 377 | | 382 | 399 | 382 | 401 | 316 | | | • • | %Sot | | | | | | | | 100 | 109 | 87 | 102 | 66 | | | Orseolved | Edd | | | | | | | | 9.7 | 11.4 | 9.7 | 11.8 | 10.3 | | r | | | | 63 | | 70 | | 73 | | 62 | 56 | 51 | 87 | 56 | | | Discharge Temp | | | 1 (est) | | 10 (eet.) | | 15 (est.) | | 17 | 27 | 27 | 35 | 275 | | | Dote ond time | P.S.T | | 8/28/63
1240 | | 8/28/63
1315 | | 8/28/63
1420 | | 10/3/62 | 11-7-62 | 12-4-62 | 1-9-63 | 2-7-63 | | I | |-----| | ۵ | | 2 | | ē | | LL. | | 0 | | | | | | | b Laboratory pH Sum of calcium and magnesium in opm. Iron (Fe), aluminum (A1), assente (A4), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reparted here as
$\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents Gravimetric determination Annual median and sings, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Busine Health Service. Maneral analyses made by United States Geological Servey, Quality of Water Barock (States Department He Internation, States Control Distract (SECFC). Managarian of Souther, California (AMD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Barock, Department of Department of Managarian States (LADPH); City of Los Angeles, Department of Barock, Department of Department of Managarian States (LADPH); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Public Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Department of Managarian States (LADPH); City of Los Angeles, Depar # ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) | | _ | | | | | | | | | | | | _ | | - | |-------------------|----------------------|--|------------------------------------|-------------|------------------|-------------|------------------|--------|------------------|--------------------------------------|----------|---|------------------------------------|---|---| | | | Anolyzed
by 1 | | nses | | | | | | | | OWR | | DWR | | | | | bid - Coliform | | 2.3 | 620. | 23. | 23. | 62. | 23. | 62. | | | | | | | Γ | 100 | - pid c | | 00 | 190 | е | 2 | 1 | - | 4 | | | | - | | | Г | | SON CON | | 32 | 31 | 29 | 26 | 28 | 26 | 22 | | 34 | | 34 | | | | | Hordn
es Co
Total
pom | | 138 | 106 | 134 | 138 | 140 | 143 | 142 | | 142 | | 132 | | | | | 00 mg | | 22 | 21 | 22 | 22 | 22 | 24 | 25 | | 26 | | 28 | | | | Total | solids sod in som | | 226° | 172 ^e | 2328 | 223 ^e | 230 | 231 ^e | 2498 | | 2538 | | 249B | | | | | Othsr constituents | | | | PO4 = 0.30 | | | | A8 = 0.00
A8S = 0.0
PO4 = 0.15 | | Color = 10
Fe = 0.26
ABS = 0.0
PO ₄ = 1.1 | | Color = 10
PE = 0.28
ABS = 0.0
PO ₄ = 1.2 | | | | | Silica
(SiO _E) | | | | 26 | | | | 25 | | 32 | | 36 | | | | million | Boron
(B) | A. 75) | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | | 0.10 | 204) | 0,09 | | | million | per mit | Fluo-
rids
(F) | ON (ST. | | | 0.3 | | | | 0.03 | | 0.03 | (STA. 20 | 0.03 | | | parts per mittion | equivalents p | Ni-
frote
(NO _S) | AT BIO TREES NEAR FELTON (STA. 75) | | | 0.01 | | | | 2.8 | | 0.02 | ELTON (| 0.03 | | | Ď | equivo | Chio-
rids
(CI) | TREES NA | 16 | 0.28 | 15 | 16 | 19 | 0.56 | 0.62 | LTON (ST | 0.68 | SEAN CREEK ONE MILE EAST OF FELTON | 0.76 | | | | c
e | Sul -
fore
(SO ₄) | AT BIO | | | 49 | | | | 36 | K AT FE | 1.00 | MILE E | 0.98 | | | 1 | 187170907 | Bicor-
banats
(HCO ₃) | RIVER | 129
Z.11 | 92 | 128
2.10 | 2.03 | 137 | 140 | 2.39 | TE CREE | 132 2.16 | LEEK ONE | 11.95 | | | | Mineral constituents | Potas- Carbon – t
sum
(K) (CO _S) | SAN LOMENZO RIVER | 00.00 | 0.00 | 0.00 | 0.20 | 0.00 | 0.03 | 0.00 | ZAYA | 0.00 | BEAN CR | 00.00 | | | 1 | MIC | Potas-
sium
(K) | SAN | | | 0.05 | | | | 0.05 | | 0.05 | | 0.07 | | | | | Sadium
(No) | | 18 0.78 | 13 | 18 0.78 | 18 0.78 | 18 | 21 0.91 | 0.96 | - | 1.04 | | 1.04 | | | | | Magns-
Srum
(Mg) | | 2.76 | 2.120 | 8.3 | 2.760 | 2.79¢ | 2.87 | 7.8 | | 7.3 | | 0.50 | | | | | Colcium
(Ca) | | | | 2.00 | | | | 44 2.20 | | 45 | | 43 | | | | | F e a | | 2.4 | 7.5 | 7.8 | 8 8.6 | 7.8 | 8.3 | 7.7 | | 8.0 | | 7.9 | | | | Specific | conductance
(micrambos pH
at 25°C) a | | 357 | 272 | 345 | 352 | 364 | 365 | 375 | | 394 | | 383 | | | | | yen (r | | 66 | 97 | 66 | 26 | 66 | 106 | 9.5 | | | | | _ | | | | Diss
oxy
ppm | | 11.4 | 10.9 | 9.6 | 9.5 | 9.5 | 9.6 | 0.6 | | | | | | | | | Temp
in OF | | 87 | 50 | 62 | 79 | 99 | 89 | 61 | | - 62 | | 99 | | | | | Dischorge Temp | | 154 | 760 | 145 | 85 | 52 | 37 | 32 | | 4 (cst.) | | 2 (est.) | | | | | ond tims
sampled
P.S.T | | 3-6-63 | 4-10-63 | 5-16-63 | 6-4-63 | 7-2-63 | 8-6-63
1610 | 9-5-63 | | 8/29/63
1545 | | 8/30/63 | | b Laboratory pH. c Sum of calcium and magnessum in apm. sum of colcum and magnessum is sym. I so that the symmetry of Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves. Gravimetric determination 32505-D-H 6-61 200 sPO Annual median and respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Duvision at Laboratories, or United States Public Health Service Mineral analyses made by United States Geological Survey, Doubtry of Virtual Branch Branch (USSS), United States Department of the Interior. Survey and Rectamentan (VISSE), United States Problem States Public Health Service Control District Chief States Geological Survey, Doubtry of Virtual States Department of Manner and Prover (LADWP), City at Los Angeles, Department of Public MadPH); City of Long Beach, MadPH, City of Long Beach, Department of Public MadPH, City of Long Beach, Department of Public MadPH); City of Long Beach, Department of Public MadPH, Long Beach, Ci | ^ | | |-----|------------------------------| | ~ | | | | | | (NO | | | | | | z | | | 2 | | | (1) | | | ŭ | | | 24 | | | | | | S | | | 00 | | | | | | 3 | | | Ę | | | | NTRAL COASTAL REGION (NO. 3) | | | Analyzed
by 1 | | | | | | | | | | | | |----------------------|---|---|--|--------------------------------|--|-----------------------------|--|---|--|---|--|--| | | | | DWR | | | | bid - Coliform | | | | | | | | | | | | | , | 1 P C | | 9.0 | | 1.0 | | 6.0 | | 0.7 | | 2 | | | | SO N | | 21 | | 99 | | 26 | | ٣ | | 74 | | | | | | 269 | | 256 | | 146 | | 118 | | 172 | | | | - E - E - E - E - E - E - E - E - E - E | | 18 | | 23 | | 22 | | 15 | | 17 | | | Total | eolide
in opm | | 3888 | | 4128 | | 2368 | | 1678 | | 276 ⁸ | | | | Other constituents | | Color = 15 Re = 0.10 ABB = 0.0 PO ₄ = 0.70 | | Fc = 0.11
ABS = 0.0
PO ₄ = 0.44 | | Color = 10
Pe = 0.11
ABS = 0.0
PO ₄ = 0.34 | | Color = 10
Fc = 0.02
A8S = 0.0
P04 = 0.09 | | Color = 35
Fc = 0.37
ABS = 0.0
PO4 = 0.33 | | | | Sitico
(SiOg) | 215) | 32 | | 26 | | - 53 | | [3] | 219) | <u> </u> | | | 00 | 5 | | 0.11 | | 0.13 | 6 | 0.00 | A. 211 | 0.03 | (STA. | 0.09 | | | illion r | Fluo-B | PIA (S | 0.03 | 234) | 0.03 | (STA. 229) | 0.01 | NO. | 0.00 | LOMONO | 0.03 | | | volents per million | rote
(NO _S) | OF OLYM | 0.01 | | 0.01 | TON (S' | 0.01 | FELT | 0.04 | F BEN 1 | 0.02 | | | equivolents per mill | Chio-
rada
(CI) | LOMPICO CREEK ONE MILE NORTH OF OLYMPIA (STA. | 20 0.56 0 | ZAYANTE CREEK AT ZAYANTE (STA. | 0,70 | SAN LORENZO RIVER AT FELTON | 0.62 | NORTH | 0.28 | EAST 0 | 0.34 | | | 1. | - | MILE - | | AT Z | | RIVER | | MILE | | NORTH | | | | ž
E | Sul -
fote
(SO ₄) | EK ONE | 1.00 | CREE | 104 | RENZO | 0.83 | E-HALF | 9.7 | E MILE | 86 | | | etifuen | Bicor-
bonote
(HCO _S) | CO CRE | 303 | ZAYANTE | 3.80 | SAN LC | 2.39 | EEK ON | 140 | LEEK ON | 120 | | | Mineral constituents | Corbon- | LOMP1 | 0.00 | | 0.00 | | 00.00 | FALL CREEK ONE-HALF MILE NORTH OF FELTON (STA. 211) | 0.00 | NEWELL CREEK ONE MILE NORTHEAST OF BEN LOMONO (STA. | 0.00 | | | ¥. | Potos-
enum
(K) | | 0.05 | | 0.07 | | 0.00 | • | 0.00 | - Z · | 2.6 | | | | Sodium
(No) | | 1.17 | | 36 | | 0.87 | | 9.8 | | 0.74 | | | | Mogne.
Glum
(Mg) | | 15 | | 15.1 | | 0.52 | | 3.9 | | 0.55 | | | | Colcium
(Ca) | | 6.14 | | 3.84 | | 48 | | 41 2.04 | | 2.89 | | | | F 0 0 | | 8.1 | | 8.3 | | 7.9 | | 8.0 | | 7.9 | | | | conductance pH
(micrambos pH
of 25°C) o | | 909 | | 628 | | 379 | | 259 | | 414 | | | | Oiesolved
oxygen
ppm %So | | | | | | | | _ | | | | | | Te of | | 95 (| | 65 | | 99 | | 85 | | 52 | | | | Oschorge Temp
in cfe in of | | 0.5 (eat.) | | (eat.) | | 8 (est.) | | 2 (est.) | | | | | | Date and time sompled P.S.T. | | 8/30/63
0915
0 | | 8/30/63
0853 | | 8/29/63
1535 8 | | 8/29/63
1520 | | 1450 | | b Loborotory pH e. Sum of calcium and magnessium in apm. 0 accepter (Cu),
lead (Pb), manyanese (Un), zinc (Za), and heravalent chromium (Cr. ¹⁰), raparted hara os 0 0 except as shown. d Iron (Fe), aluminum (A1), arsenic (As), assenic (As). Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. Gravimetric datarmination. 9 Unternstruct Communication and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratoris, or United States Public Health Service. i. Minned analyses made by United States Geological Survey, Quality of Water Banch (1955), United States Public Health Service (1958); United States Public Health Service (1958), Son Bennedino County Flood County Flood County Electron County Flood County Public County County County County Flood County Co 3 | | - | | | _ | | | | | | | | | ٦ | |----------------------|--|-------------------------------------|--|--------------------------|---|---|--|--|---|--|--|---|---| | | Anolyzed
by 1 | | ZI-NO | | DWR | | DAR | | NA
NA | | awa . | | | | | Mordness bur- es CoCO ₃ ity MPN/mil foto! N.C. nopm | | | | | | | | | | | | | | | - A G | | 0.7 | | 0.3 | | 9.0 | | 9.0 | | 0.5 | | | | | N COS | | 26 | | 0 | | 0 | | 58 | | 11 | | | | L | | | 151 | | 69 | | 11 | | 230 | | 260 | | | | | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 23 | | 25 | | 26 | | 56 | | 22 | | | | Total | solids
n ppm | | 253 ⁸ | | 1208 | | 1328 | | 3838 | | 4128 | | | | | Other constituents | | Color = 10
Fe = 0.05
ABS = 0.0
PO4 = 0.73 | | Color = 5
Fe = 0.01
ABS = 0.0
FO ₄ = 0.04 | | Color = 10
Fe = 0.03
Abs = 0.0
Fo ₄ = 0.16 | | Color = 15 Fe = 0.06 ABS = 0.0 Po ₄ = 0.27 | | Color = 20
Fe = 0.03
ABS = 0.0
FO ₄ = 0.25 | | | | | Sirco
(SiO ₂) | | হা | | 23 | | গ্ৰ | | 12 | 206) | 20 | | _ | | | 8 | | 0.10 | | 0.0 | 6 | 70.0 | | 0.13 | (STA. | 0.15 | | | | r million | Fluo-
ride
(F) | 216) | 0.03 | 210) | 0.00 | TA. 20 | 0.00 | A, 205 | 0.07 | CREEK | 0.07 | • | _ | | ports per million | | LOVE CREEK AT BEN LOMOND (STA. 216) | 0.0 | CREEK AT BROOKDALE (STA. | 0.01 | BOULDER CREEK AT BOULDER CREEK (STA. 208) | 0.0 | BEAR CREEK AT BOULDER CREEK (STA. 205) | 0.0 | BEAR CREEK FOUR MILES NORTHEAST OF BOULDER CREEK (STA. | 0.01 | | _ | | 0 | Chlo-
rids
(CI) | BEN LOPIC | 23 | BROOKD/ | 0.25 | BOULDER | 0.34 | OULDER C | 0.76 | HEAST OF | 0.68 | | | | ē | Sul -
fors
(SO _e) | REK AT | 38 | REEK AT | 0.10 | EEK AT | 0.19 | EK AT B | 2.04 | SS NORT | 110 | | | | stituenti | Bicar-
bonate
(HCO ₃) | LOVE CR | 2.49 | CLEAR C | 1.51 | LDER CRU | 1.56 | EAR CRE | 3.44 | DUR MILE | 3.77 | | | | Mineral constituents | Carban-
ate
(CO ₃) | | 0.00 | | 00.0 | BOU | 0.00 | M | 0.00 | CREEK F | 0.00 | | | | <u> </u> | Potos-
Rium
(X) | | 0.05 | | 0.06 | | 0.05 | | 0.06 | BEAR | 2.3 | | | | | Sodium
(No) | | 0.91 | | 11 0.48 | | 13 | | 38 | | 33 | | | | | Mogne-
Sium
(Mg) | | 7.5 | | 4.0 | | 5.4 | | 13 | | 1.35 | | | | | Coleium
(Ca) | | 2.40 | | 1.05 | | 1.10 | | 3.54 | | 3.84 | | | | | 돌이스 | | 8.0 | | 7.4 | | 7.9 | | 8.2 | | 8.0 | | | | | conductance
(micromhos
of 25°C) | | 388 | | 181 | | 204 | | 595 | | 634 | | | | | Dissolved o eygen (con your con co | | | | | | | | | | | | | | | Te an | | 63 | | 58 | | 09 | | 59 | | 58 | | ĺ | | | Dischorge Temp | | 0.25(est | | 1 (est.) | | 3 (est.) | | 2 (est.) | | 2 (eat.) | | | | | Dote
ond time
sompled
P.S.T. | | 8/29/63
1330 | | 8/29/63
1305 | | 8/29/63
1240 | | 8/29/63
0910 | | 8/29/63
1005 | | | o Field pH DE OUZ TO-O PHO-SOSZE b Laboratory pH. Jum of eactum and magnets with in spin. Item (Fa), aluminum (Al), assence (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported have as 0.00 except as shown. Sum of calcium and magnesium in epm. Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves Gravimetric determination. Annual madion and range, respectively. Calculated from analyses of depircate manthly samples, made by California Department of Poblic Health, Division of Laboratories, or United Stores Pablic Health, Service Minand tonityses made by United Stores Capital Service, Department of the Interior. Survice (1958): United Stores Department of Memory and Power (LADMP), City of Los Angeles, Department of Memory of Sources, Organization (AMD), Los Angeles Department of Memory Power (LADMP), City of Los Angeles, Department of Ladment (LADMP), City of Los Angeles, Department of Ladment (LADMP), City of | | Analyzed
by i | | DWR | UAR. | S. S | DWR | | us, s | | | |--------------|---|---|--|--|---|---|----------------------------------|---------|---------|--------------| | | Hordness bid - Coliform as CoCO ₃ ity MPN/ml | | | | | | | 230. | 62. | 62. | | T o' | - piq
- hiq
u bom | | - | 7 | - | 6.1 | | | 2 | ~ | | | Hordness
as CoCO ₃
Total N C
ppm | | 65 | 64 | 69 | 07 | | 89 | 120 | 109 | | | Total
ppm | | 245 | 178 | 248 | 252 | | 305 | 327 | 324 | | å | - pos | | 27 | 36 | 25 | 10 | | 27 | 28 | 29 | | Totol | solved sod- | | 4048 | 3687 | 401% | 357K | | 476 | 5376 | 244°E | | | Other constituents | | Color = .7
Fe =
A8S =
PO _Q =3(| Color = 15
Fe = 0.24
ABS = 0.0
PO ₄ = 0.19 | Color = 10
$F_{e} = 0.1$
$F_{e} = 0.1$
$F_{e} = 0.1$ | Color = 10
Fe = 0.03
AARS = 0 0
PO ₄ = 0.54 | | | | | | | Silico
(SiO ₂) | | 17 | 232) | [2] | 24 | | | | | | lon | Boron (8) | 2 | 0.32 | (STA. | | A. 228) | | 0.2 | 0.1 | 0.1 | | per million | F1u0-
ride
(F) | A. 22 | 0.02 | CREEK
0.04
0.02 | CAREA
0 5
0.03 | SK (STA | | | | | | 40 | rose (NO ₃) | EN (ST | 0.01 | 0.01 0 | 0.02 | FR CREEP 0.02 0 | | | | | | equivolents | | ER CRE | | 10 P | 0F 801. | OULDER | - SIA. 7 | | | -12 | | 6.0 | Chio- | ROUL | 51 | 30RTB1 OF | 31 0 87 | H OF 80UI | JOET (| 65 | 61 | 1.81 | | č | Sul-
fore
(SO ₄) | JER AL | 18 1 09 | MILE 2.16 | 101 2.10 | S NORTH | AT SO | | | | | constituents | Bicor-
bonote
(HCO ₃) | NZO RIV | 220
3 60 | 157
2 57 | 218
3.57 | X MILE
258
423 | CREEK | 263 | 3.93 | 258
4 23 | | Mineral cons | Corbon-
Ote
(CO ₃) | SAN LORENZO RIVER AI BOULDER CREEA (STA. 227) | 00 0 | THO BAR CREEK ONE MILE WORTH OF BOULDER CREEK (STA.) $\frac{U}{0.00} = \frac{157}{2.57} = \frac{156^4}{2.18} = \frac{3.5}{0.99} = \frac{0.7}{0.01} = \frac{0.46}{0.02} = \frac{0.18}{0.02}$ | KINGS CREEK TWO FILLES WHYTH OF BULLLER CAEER (STA) $\frac{6}{0.00} = \frac{2.18}{3.57} = \frac{101}{2.10} = \frac{31}{0.87} = \frac{1.6}{0.02} = \frac{0.2}{0.03} = \frac{0.22}{0.03}$ | SAN LORENZO RIVER SIX MILES BORTH OF BOULDER (REEK (STA. 228)) $\frac{1.7}{10.04} = \frac{0}{0.04} = \frac{238}{4.23} = \frac{66}{11.33} = \frac{14}{0.39} = \frac{1.4}{0.02} =
\frac{0.4}{0.02}$ | SOCLEL GREEK AT SOQUEL (STA. 76) | 000 | 0.20 | 0.07 | | Mine | Potos-
Sium
(K) | | 2.4 | TWC | 700 | ORENZO 1.7 | | | | | | | Sodium
(Na) | | 1.8 | 48 7 09 | 38 | SAN L | | 53 2 31 | 58 | 2.76 | | | Magne- S
sium
(Mg) | | 1 13 | 12 0.97 | 127 | 9.0 | | 6.104 | 0.54 | 7
.7
D | | | Colcium A | | 3.79 | \$2
2 59 | 3.09 | 86 | | | | | | | I of- | | 7.8 | 7.9 | 0 7 | - D | | | 00 30 | 20 20 | | Soscific | conductonce pH
(micromhos a
of 25°C) | | \$50 | 579 | 577 | 552 | | 746 | 841 | 853 | | | fved co | | | | | | | 114 | 7 | 9.6 | | | Oisso | | | | | | | 11.3 | 1 01 | | | | Tamp
in of | | 65 | 55 | 20 | 55 | | 0.1 | 57 | 5 | | | Oischorge Temp | | 3 (est) | 0.25
(est.) | l (est) | 3 (cst) | | 4 | 20 | -4 | | | ond time
sompled | | 8/29/ | 8/29/65
820 | 8/29/63
755 | 8/29/03
1725 | | 10-3-62 | 11-7-62 | 12-4-02 | a Freid pH b Laboratory pH e. Sum of calcum and magnessium in spm. 00 overeit (Cu), lead (Pb), manginese (Mn), zinc (Zn), and hexavalent chramium (Gr. 1, reported here as 100 overeit as shawn at Iran (Fe), altuminum (Al), arrented here as 100 overeit as shawn Determined by addition of analyzed constituents e Derived from conductivity vs TDS curves h Annual median and rong, respectively, Calculated from analyses of duplicane monthly samples made by California Department of Public Health, Division of Laboritaries, or United States Pablic Health Service I Maneal markyses made by United States Geological Sarvey, Doubly of Merice Branch (1920), United States Branch (1920), United States Branch (1920), United States California or Order of States California California (1920), Les Angeles Department of Water and Power (L.D.PP), City at Los Angeles, Department of Public Health (L.D.PP), City of Los Angeles, Departme ĸ, D-35 TABLE D-2 # ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) | | | Anolyzad
by i | | uses | | | | | | | | | | nsgs | | | |-------------------|---------------|--|-----------------|------------------|------------------|---------|---------|--------------------|-------------------|--------|----------------|-------------------------|-----------------------|--------------------|-------------|--------------------| | | | bid - Coliform | | 6.2 | 62. | 0.62 | 2,400. | 13. | 620. | 23. | 62. | 6.2 | | 130. | 62. | 62. | | - | L L | - Pag c | | - | 20 | 10 | 009 | 21 | p=4 | - | - | е | | 15 | 2 | - | | | | Hordness
os CoCO ₃
Totol N C
pom ppm | | 106 | 88 | 89 | 26 | 80 | 76 | 06 | 100 | 88 | | 0 | 0 | 0 | | | | Hordness
os CoCO ₃
Totol N C
pom ppm | | 309 | 222 | 260 | 148 | 246 | 266 | 284 | 301 | 295 | | 617 | 416 | 475 | | | Per | Poor - Poor | | 27 | 20 | 20 | 19 | 22 | 23 | 24 | 27 | 27 | | 57 | 57 | 57 | | | Total | solids
mdo n | | 502 ⁶ | 341 ^e | 402e | 216 | 396g | 417 ^e | 442e | 477 | 5098 | | 1,288 ^e | 1,144 | 1,288 ^e | | | | Other constituents | | | | | | Pu4 = 0.20 | | | As & 0.00 | A8S = 0.0
PO4 = 0.10 | | | | | | | | Silico
(5:02) | | | | | | 25 | | | | 33 | | | | | | | lon | Boron
(B) | | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | (77) | 0.1 | 1.6 | 1.8 | | million | per million | Fluo-
rida
(F) | A. 76) | | | | | 0.02 | | | | 0.07 | (STA. | | | | | ports per million | equivolents p | rote
(NO ₃) | AT SOQUEL (STA. | | | | | 0.0 | | | | 0.04 | NEAR CHITTENDEN (STA. | | | | | - | equivo | Chlo-
ride
(CI) | K AT SOC | 53
1.50 | 19 | 25 0.71 | 0.28 | 23 | 31 0.87 | 1.18 | 55 | 1.75 | NEAR CHI | 375 | 8.15 | 9.37 | | | ē | Sui -
fots
(SO ₄) | Soquel CREEK | | | | | $\frac{111}{2.31}$ | | | | 2.06 | | | | | | | constituents | Bicor-
bonote
(HCO ₃) | sodue | 3.57 | 2.69 | 3.28 | 112 | 3.13 | 3.36 | 3.34 | 3.74 | 3.80 | PAJARO RIVER | 584
9.57 | 520
8.52 | 578 | | | Minsral con | Corbon-
ote
(CO ₃) | | 15 | 0.00 | 0.13 | 0.00 | 0.20 | 13 | 16 | 0.30 | 0.33 | | 00.00 | 0.40 | 0.40 | | | Min | Potos-
sium
(K) | | | | | | 3.0 | | | | 5.2 | | | | | | | | Sodium
(No) | | 52 2.26 | 26 | 1.30 | 16 | 32 | $\frac{37}{1.61}$ | 42 | 2.18 | 52 2.26 | | 288 | 258 | 284 | | | | Mogne-
sium
(Mg) | | 6.18c | 4.440 | 5.210 | 2.96€ | 1,33 | 5.320 | 5.68c | 6.026 | 23 | | 9.580 | 8.32c | 9.50c | | | | Colcium
(Co) | | | | | | 3.59 | | | | 3.99 | | | | | | | | a a E | | 8.5 | 8.1 | 8.7 | 7.7 | 8.0 | 8 8.5 | 8.8 | 8.2 | 8.4 | | 8.0 | 8.3 | 8.4 | | | Specific | (micromhos pH of 25°C) | | 787 | 535 | 630 | 338 | 586 | 653 | 693 | 748 | 818 | | 2,060 | 1,830 | 2,060 | | | | gen (f | | 105 | 104 | 101 | 86 | :: | 101 | 128 | 96 | 90 | | 86 | 75 | 86 | | | | Dissolved
oxygen
ppm %Sat | | 12.1 | 10.7 | 11.2 | 11.11 | 10.0 | 9.1 | 11.3 | 8.2 | 7.8 | | 8.0 | 7.6 | 9.1 | | 1 | | Te and | | 67 | 85 | 52 | 20 | 70 | 70 | 72 | 75 | 73 | | 67 | 59 | 55 | | | | Dischorge Tamp
in cfs in of | | 13 | 115 | 47 | 250 | 42 | 24 | 15 | 7.8 | 5.6 | | 0.5 | 1.0 | 0.7 | | | | Dote
and time
sompled
P.S.T. | | 1-9-63 | 2-7-63 | 3-6-63 | 4-10-63 | 5-16-63 | 6-4-63 | 7-2-63 | 8-6-63
1520 | 9-5-63 | | 10-1-62 | 11-5-62 | 12-3-62
1245 | o Field pH. Loborotory pH Sum of colcium and magnesium in opm. Iron (Fa), aluminum (AI), arsenic (AS), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci +6), reparted here as 0.00 col Sum of colcium and magnesium in epm. except as shown. Darived from conductivity vs TDS curves Determined by addition of analyzed constituents. Annual median and annual seasestively. Calculated from anoitises of displicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service. Mineral anoityses made by United States Geological Survey, Oxidity of Heatte Branch (1925), Luted States Department of the Internal States and Reformation (1928); Linked States Charles Continued (1928); Las Angeles Department of Maries and Power (IL ADMP), City of Las Angeles, Department of Public Health (1924); Las Angeles Department of Marie Resources (1948); as indicated. # ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) | | Anolyzed
by i | | nses | | | | | | | | | | uses | | | |----------------------|---|--|---|--------|--------|--------|---|--------|--------|----------------|---------------------------------------|---|---------|---------|---------| | | ec CoCO ₃ 1ty MPN/mi
ppm ppm ppm | | 23. | 620. | 130. | 620. | 6.2 | 230. | 6.2 | 62. | 62. | | 620. | 6.2 | 23. | | | - × 6 | | 2 | 240 | 25 | 200 | 09 | 20 | 6 | ۵. | 6 | | 5 | 2 | | | | Hordness
os CoCO ₃
Total N.C.
ppm ppm | | ======================================= | 15 | 9 | 26 | 115 | 192 | 172 | 98 | 28 | | 193 | 190 | 146 | | | | | 780 | 102 | 232 | 142 | 341 | 500 | 520 | 512 | 617 | | 647 | 682 | 9009 | | | 200 | | 55 | 24 | 24 | 22 | 25 | 30 | 34 | 38 | 40 | | 78 | 94 | 45 | | Total | eolids
in ppm | | 1,269 | 1,638 | 3696 | 209 | 5198 | 800 | 938 | 944° | 8948 | | 1,361 | 1,413 | 1,205 | | | Other constituente | | | | | | As = 0.00
ABS = 0.1
PO _L = 1.4 | , | | | $As = 0.02$ $ABS = 0.0$ $PO_4 = 0.00$ | | | | | | | Silico
(\$:0\$) | | | | | | 19 | | | | 21 | 'a) | | | | | 60 | 5 | | 1.9 | 0.0 | 0.3 | 0.2 | 0.3 | 0.7 | 0.8 | 0.8 | 0.9 | TA. 77 | 1.7 | 2.0 | 1.6 | | volents per million | Fluo-
ride
(F) | (77 | | | | | 0.3 | | | | 0.03 | ION (S' | | | | | | | STA. | | | | | 0.10 | | | | 2.5 | LE STAT | | | | | equivolents | Chio-
ride
(C!) | ITTENDER | 338 | 0.34 | 33 | 13 | 48 | 94 | 3.16 | 3.53 | 3,67 | LLEY FIF | 260 | 186 | 143 | | 5 | Sut -
fota
(SO ₄) | NEAR CH | | | | | 2.87 | | | | 3.44 | BEAR VA | | | | | tytuents | Bicor-
bonote
(HCD ₃) | PAJARO RIVER NEAR CHITTENDEN (STA. 77) | 8.98 | 106 | 3.34 | 142 | 4.08 | 352 | 69.9 | 8.28 | 8.90 | ZR NEAR | 9.08 | 9.24 | 482 | | Mineral constituents | Corbon - E | PAJARO | 12 | 0.00 | 0.00 | 0.0 | 13 | 0.40 | 0.27 | 0.23 | 0.13 | SAN BENITO RIVER NEAR BEAR VALLEY FIRE STATION (STA. 77a) | 0.00 | 18 | 35 | | Mine | Potos-C
(X) | | | | | | 2.2 | | | | 5.6 | SAN BEN | | | | | | Sodium
(No) | | 268 | 15 | 34 | 0.78 | 2.35 | 100 | 5.31 | 142 | 151 | | 274 | 270 | 9.74 | | | Mogne-
sium
(Mg) | | 209.6 | 2.04c | 4.64° | 2.830 | 3.48 |
9.990 | 10.40c | 10.25c | 5.94 | | 12.946 | 13.64c | 12.00c | | | Colcium
(Co.) | | | | | | 3.34 | | | | 3.64 | | | | | | | T a | | 8.3 | 7.4 | 8.2 | 7.5 | 8.4 | 8 8.7 | 8.0 | 8.1 | 8.1 | | 8.2 | 8.2 | 8.2 | | Sancilia | (micrombos of of 25°C) a | | 2,030 | 262 | 591 | 334 | 847 | 1,280 | 1,500 | 1,510 | 1,440 | | 2,120 | 2,180 | 1,860 | | | yen (r | | 92 | 82 | 9.5 | 98 | 8 | 93 | 85 | 100 | 66 | | 86 | 107 | 131 | | | Dissolved
oxygen
ppm %Sot | | 0.6 | 8.2 | 9.6 | 9.8 | 80.00 | 5.5 | 7.6 | 9.1 | 9.1 | | 9.5 | 10.9 | 12.0 | | | | | 47 | 09 | 59 | 09 | 62 | 89 | 70 | 69 | 89 | | 63 | 26 | 65 | | | Dischorge Temp | | 1.5 | 1,200 | 97 | 1,100 | 57 | 29 | 14 | 0.8 | 3.0 | | 0.2 | 0.1 | 1.0 | | | ond time
compled
P.S.T | | 1-7-63
1710 | 2-5-63 | 3-4-63 | 4-8-63 | 5-15-63
0900 | 6-5-63 | 7-1-63 | 8-5-63
1350 | 9-5-63
1315 | | 10-2-62 | 11-6-62 | 12-3-62 | b Loborotory pH Sum of colcium and magnesium in epm. Symptococcum and magnessian in spin. Iron (Fe), oluminum (Al), practic (As), copper (Ca), lead (Pb), manganese (Un), zinc (Zn), and hexoralent chramium (Cr*5), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves Grovimetric determination. Determined by addition of analyzed constituents. Annual medion and annual, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Poblic health, Division of Laboratories, or United States Bublic Health, Service. Mineral analyses made by United States Geological Survey, Quality of Water Barach (USCS); United States Department of The Interior Survey (USCB); United States Department of Water Common Order (USCB); United States Geological Survey, Quality of Water Barach (USCS); United States (USCB); S ### TABLE D-2 # ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) | | | Anolyzed
by i | | USGS | | | | | | | | | | nses | | | |-------------------|--------------|--|-------------------------------|--------------------|------------------|----------|-------------|------------|---|--------------------|-------------|--------------|-----------|------------------|------------------|------------------| | | | bid - Coliform | | 23. | 620 | 0.23 | 130. | 62. | 14. | 130. | 2.3 | 6.2 | | 620. | 62. | 2.3 | | | Tur. | - pid - | | 2 | 07 | 2 | 10 | 20 | 07 | - | г | - | | - | 20 | 30 | | Г | | Hardness
es CoCO ₃
Total N C
ppm | | 147 | 80 | 119 | 126 | 14 | ======================================= | 1117 | 156 | 153 | | 10 | 14 | 6 | | | | | | 618 | 526 | 596 | 602 | 358 | 408 | 995 | 965 | 598 | | 174 | 97 | 131 | | | Per- | - E 04 - | | 41 | 35 | 38 | 36 | 19 | 18 | 77 | 84 | 47 | | 13 | 13 | 13 | | | Totol | solids
in ppm | | 1,199 ^e | 927 ^e | 1,076 | 9866 | 44,28 | 527 ^e | 1,128 ^e | 1,290 | 1,3108 | | 216 ^e | 126 ^e | 173 ^e | | | | Other constituents | | | | | | PO4 = 0.10 | | | ÷ | ABS = 0.00 | | | | | | | ļ | (SiOg) | 77a) | | | | | 12 | | | | 15 | | | | | | | Hion | Boron
(B) | (STA. 77 | 1.6 | 1.4 | 1.5 | 1.5 | 0.4 | 9.0 | 1.7 | 2.2 | 2.1 | | 0.0 | 0.1 | 0.0 | | E | per million | Flug-
ride
(F) | S) NOI | | | | | 0.03 | | | | 0.4 | _ 96 | | | | | ports per millian | equivalents | Ni-
trate
(NO ₃) | NEAR BEAR VALLEY FIRE STATION | | | | | 0.03 | | | | 0.03 | (STA. | | | | | 1 | vinbe | Chlo-
rids
(Cl) | ALLEY FI | 149 | 2.40 | 104 2.93 | 94 | 18 0.51 | 0.62 | 3.33 | 162
4.57 | 163 | HILL | 8.8 | 5.2 | 6.5 | | | 5 | Sul -
fate
(50 ₄) | BEAR V | | | | | 72 | | | | 9.62 | NORGAN | | | | | | constituents | Bicar-
banate
(HCO ₃) | SR NEAR] | 530
8 69 | 498 | 8.21 | 502
8.23 | 396 | 392 | 475 | 488 | 513 | EEK NEAR | 3.15 | 101 | 149 | | - 1 | Wineral can | Corbon-
ote
(CO ₃) | BENITO RIVER | 0.73 | 23 | 1.33 | 38 | 0.40 | 1.50 | 35 | 0.80 | 15 | TAS CREEK | 0.13 | 0.00 | 0.00 | | | Min. | Potas-
sium
(X) | SAN BEN | | | | | 0.07 | | | | 0.10 | | | | | | | | Sodium
(Na) | | 8.70 | 5.74 | 7.22 | 153 | 39 | 1.78 | 186 | 248 | 248
10.79 | | 12 0.52 | 7.0 | 0.38 | | | Ì | Magne-
sium
(Mg) | | 12.364 | 10.52 | 11.92 | 12.044 | 5.61 | 8.16 | 11.32 | 11 92 | 9.86 | | 3.48c | 1.94c | 2.62€ | | | | Calcium
(Ca) | | | | | | 31 | | | | 2.10 | | | | | | | | 를 하스 | | 4.8 | 8.5 | 8.7 | 8.8 | 7.8 | 8.9 | 8.4 | 8.5 | 8.3 | | 8.3 | 7.3 | 7.6 | | | Spacific | conductance
(micrambos
at 25°C) | | 1.850 | 1,430 | 1,660 | 1,540 | 758 | 813 | 1,740 | 1,990 | 2,110 | | 354 | 207 | 283 | | | | gen (| | 112 | 66 | 117 | 105 | 98 | 105 | 102 | 157 | 138 | | 140 | 92 | 106 | | | | Disso | | 12 4 | 9.5 | 11.6 | 10.8 | 80 | 8.9 | αο
 | 12.7 | 12.1 | | 11.2 | 9.5 | 11 2 | | | | Temp
in of | | 64 | 79 | 58 | 55 | 67 | 72 | 71 | 77 | 69 | | 80 | 65 | 55 | | | | Discharge Temp | | 9.0 | 5.0 | 4.0 | 6.0 | 3.2 | 107 | 4.0 | 0.2 | 0.1 | | 3 (est.) | 125 (est | 15 (est.) | | | | sompled
sompled
P.S.T. | | 1-8-63
1030 | 2-5-63
1610 | 3-5-63 | 4-9-63 | 5-15-63 | 6-5-63
1220 | 7-1-63 | 8-6-63 | 9-4-63 | | 10-1-62
1540 | 11-5-62 | 12-3-62 | o Field pH Labaratary pH Sum straction and magnession in equ. (Cu), lead (Pb), mangonese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown Derived from canductivity vs TDS curves Sum of calcium and magnesium in epm Determined by addition of analyzed constituents. Gravimetric determination Annual median and range, respectively. Calculated from analyses of displicate monthly samples made by California Department of Poblic Health, Division of Laboratories, or United States Basine Health Service. Mineral analyses made by United States Goological Survey, Quality of Merie Branch (1975), Lines States Department Services and Reclamation (1978); United States Goological Survey, Quality of Merie Branch (1974), Las Angeles Department of Mener on Product (LADMP), City of Las Angeles, Department of Poblic Health Edd DPH), City of Las Angeles, Department of Poblic Health Edd DPH), City of Las Angeles, Department of Mener Resources (1978), as indicated its single Relative Meneral Persons (1974). | | Anolyzed
by 1 | | USGS | | | | | | | | | | USGS | | |--|---|---------------------------------------|------------------|------------------|------------------|------------------|------------|------------------|------------------|---------|-------------------------|---|----------------|--| | | bid - Coliform A | | 2.3 | 230 | 1.3 | 6.2 | 0.62 | 2.3 | 2.3 | 230. | .62 | | | | | الْ ا | - Pid | | 2 | 8 | 09 | 15 | 2 | 5 | 7 | ٠, | 15 | | 06 | | | Ť | SON NE | | 10 | 2 | -3 | 9 | 5 | 90 | 20 | • | 11 | | 29 | | | | Toto!
Ppm | | 163 | 76 | 92 | 103 | 128 | 146 | 148 | 152 | 162 | | 136 | | | -/-0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 13 | 15 | 12 | 12 | 12 | 12 | 11 | 13 | 13 | | 23 | | | Totel | eolved
in pom | | 207 ^e | 107 ^e | 124 ^e | 137 ^e | 1668 | 187 ^e | 178 ^e | 203 | 2148 | | 2358 | | | | Other constituents | | | | | | PO4 = 0.05 | | | 0 0 0 | A8S = 0.0
PO4 = 0.00 | | | | | | Silica
(SiO ₂) | | | | | | 13 | | | | 23 | 212) | 12 | | | lon | Boron
(B) | | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0.0 | 0.2 | 0.2 | (STA, | 0.0 | | | ports per million
equivolents per million | Fluo-
ride
(F) | · • - | | | | | 0.0 | | | | 0.3 | ALINAS | 0.0 | | | orts per
olents | frote
(NO ₃) | (STA. 9 | | | | | 0.03 | | | | 0.04 | NEAR S | 0.12 | | | equivo | Chio- | THE | 0.20 | 3.8 | 0.11 | 0.16 | 5.5 | 0.17 | 0.00 | 5.2 | 6.0 | K ROAD | 26 | | | C. | Sul -
fote
(SO ₄) | MORCAN | | | | | 0.37 | - | | | 25 0.52 | L STAC | 30 0 62 | | | fifuents. | Bicor-
bonate
(HCO ₃) | SEK NEAF | 158
2.59 | 90 | 107 | 118 | 138 | 2.49 | 2.38 | 2.92 | 3.02 | EEK AT | 130 | | | Mineral constituents | Corbon-
ote
(CO ₃) | UVAS CREEK NEAR MORCAN HILL (STA. 96) | 14 0.47 | 00.00 | 0.00 | 0.00 | 0.20 | 0.27 | 0.20 | 00.00 | 0.00 | CABILAN CREEK AT OLD STAGE ROAD NEAR SALINAS (STA | 0.00 | | | Mine | Potos- C
sium
(K) | _ | | | | | 0.03 | | | | 0.03 | — § · | 3.5 | | | | Sodium
(NO) | | 0.48 | 6.0 | 5.9 | 6.2 | 0.37 | 9.0 | 0.37 | 0.44 | 0.48 | | 0.83 | | | | Magne-
eium
(Mg) | | 3.26€ | 1.52c | 1.840 | 2.06€ | 1.11 | 2.93c | 2.976 | 3.04c | 1.40 | | 8.8 | | | | Colcium
(Ca) | | | | | | 29 | | | | 37 | | 40 2.00 | | | | I e | | 8.5 | 7.5 | 9.8 | 7.7 | 8.3 | 8.6 | 8.5 | 8.0 | 8.2 | | 7.8 | | | Socific | conductonce pH
(micromhos of 25°C) e | | 339 | 176 | 204 | 224 | 275 | 307 | 291 | 332 | 350 | | 359 | | | | yen (r | | 154 | 101 | 106 | 97 | 125 | 119 | 115 | 113 | 102 | | | | | | Disso | | 16.9 | 10.3 | 10.8 | 0 | 11 1 | 10.3 | 11.0 | 9.6 | 60 | | | | | | T of | | 54 | 58 | 58 | 59 | 70 | 7.0 | 63 | 7.7 | 74 | | 61 | | | | Orechorge Temp | | 1 (est.) | 300(est) | 10(est | 500(est.) | 8 (est | 5 (est | 10 (est. | 30 (est | 25 (eat. | | | | | | Dote
compled
P.S.T | | 1-7-63 | 2-5-63 | 3-4-63 | 4-8-63
1520 | 5-14-63 | 6-5-63 | 7-1-63 | 8-5-63 | 9-5-63 | | 2-1-63
1430 | | o Field pH b Labaratory pH Sum of calcum and magnessum in epm. Sum of calcum and magnessum in epm. Ion (Fe), oluminum (A1), arsenic (A2), capper (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (C1 *6), reported here as 0.0 except as shown. Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves h Annol median and range, respectively Calculosed from analyses of duplicate monthly samples made by Calcinana Department of Public Health, Division of Lobardories, or United States Public Health Service (USPHS), San Bennardino County Flood Logardories (USPHS), Los Angeles Department of the Interior, Survey Office Health, Service (USPHS), San Bennardino County Flood Carrell Obstact (SBGFCD), Ministration of Sanifern Calcinano (MRD), Los Angeles
Department of Moter and Power (LADMP), City of Los Angeles Public Health, City of Lord Beach, Department of Public Health, City of Lord Beach, Department of Public Health, City of Lord Department of Mater Resources (DMR), as indicated 32505-HHI 0-61 200 LPO TABLE D-2 # ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) | | | - | | | | | | | | | | | | | |-------------------------|--|-------------------------------|---------|---|------------------|---|----------------|------------------------------------|---------|------------------|---------|------------------|--------|--------| | | Anolyzed
by i | | nscs | | USGS | | USGS | | USGS | | | | | | | | es CoCO ₃ 11y MPN/ml
os CoCO ₃ 11y MPN/ml
fotol N.C. | | | | | | | | 7,000.+ | 230. | 230. | 130. | 210. | 2.3 | | | - Pid
600 | | 2 | | m | | 2 | | 20 | 2 | 2 | 2 | 09 | 20 | | | 000 N | | 0 | | 69 | | 13.7 | | 0 | 0 | 0 | 0 | 37 | 69 | | | 1. | | 320 | | 304 | | 339 | | 232 | 508 | 967 | 570 | 153 | 258 | | | 1 0 0 E | | 14 | | 29 | | 47 | | 57 | 37 | 35 | 31 | 22 | 24 | | Total | solved
solids
in ppm | | 4328 | | 506 ⁸ | | 8318 | | 673 | 927 ^e | a606 | 970 ^e | 236° | 394° | | | Other constituents | | | | | ^ | | | | | | | | | | | Silico
(SiO ₂) | 218) | 24 | | 28 | A. 237) | 72 | | _ | _ | | | | | | lo lo | Boron (B) | (STA. | 0.5 | A. 200) | 0.0 |
 S (ST. | 1.0 | 43) | 6.0 | 0.2 | 0.3 | 0.1 | 0.0 | 0.2 | | volents per million | Fluo-
rids
(F) | ALINAS | 0.07 | AS (STA | 0.0 | SALINA | 0.07 | (STA. 4 | | | | | | | | ants par | rote
(NO ₃) | NEAR S | 0.03 | SALIN. | 8.4 | E NEAR | 2.1 | CKELS | | | | | | | | equivolents per million | Chio-
rids
(CI) | STACE ROAD NEAR SALINAS (STA. | 6.0 | AD NEAR | 2.51 | 7 BRIDG | 220
6.21 | AR SPRE | 4.23 | 35 | 143 | 146 | 15 | 33 | | Ē | Sul - C
fots
(SO ₄) | LD STAG | 0.56 | LAGE RO | 56 2 | WAY 11 | 2.35 | VER NE. | 417 | 10 | 4 17 | -14 | 10 | | | | Bicor - S
bonote f
(HCO ₃) (9 | NATIVIDAD CREEK AT OLD | 6.72 | ALISAL CREEK AT OLD STAGE ROAD NEAR SALINAS (STA. | 262
4.29 | TORO CREEK AT HIGHWAY 117 BRIDGE NEAR SALINAS (STA. | 3.70 1 | SALINAS RIVER NEAR SPRECKELS (STA. | 302 | 11.47 | 675 | 770 | 2.33 | 204 | | Mineral constituents | Corbon – Bu | DAD CRE | | REEK A | 0.40 | CREEK | 0.33 | _ SA! | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 13 2 | | Mineral | 500 | NATIVI | 0.00 | TISAL | | TORC | | | 0 | 0 | 0 | 0 | 0 | -1 o | | | Potos-
srum
(X) | | 9.9 | 4 | 2.2 | | 0.11 | | Io | 1 | 19 | 21 | 1/ | lin | | | Sodium
(No) | | 1.09 | | 58 2.52 | | 138 | | 140 | 135 | 5.26 | 120
5.22 | 0.87 | 38 | | | Mogne-
Sium
(Mg) | | 36 2.96 | | 2.14 | | 2.39 | | 4.630 | 10.16 | 9.926 | 11.40c | 3.06€ | 5.160 | | | Coleium
(Co) | | 3.44 | | 3.94 | | 4.39 | | | | | | | | | | | | 7.7 | | 8.5 | | 8.5 | | 7.3 | 9.0 | 7.4 | 7.5 | 8.1 | 8.1 | | Coactin | conductance
(m.eromhos pH
ot 25°C) s | | 663 | | 821 | | 1,330 | | 1,110 | 1,530 | 1,500 | 1,600 | 389 | 650 | | | psu (r | | | | - | | | | 108 | 09 | 20 | 36 | 101 | 100 | | | Dissolved
oxygen
ppm %Sot | | | | | | | | 10.8 | 6.3 | 2.0 | 0.4 | 6.6 | 11.2 | | | | | 64.5 | | 09 | | 62 | | 60 1 | 57 | 19 | 52 | 62 | 51 1 | | | Dischorge Temp | | | | | | | | 9.0 | 3.0 | 0.5 | 5.0 | 1,280 | 210 | | | Ond time
sempled
P.S.T | | 2-11-63 | | 2-4-63 | | 2-4-63
1600 | | 10-3-62 | 11-7-62 | 12-4-62 | 1-9-63 | 2-6-63 | 3-6-63 | b Laboratory pH. Determined by addition of analyzed constituents. Sum of colcium and magnesium in epm. Jun of colcium and magnetis um in spin. Iron (Fe), oluminum (A1), arcinic (A3), copper (Cu), Iead (Pb), manganese (Mn), zinc (Zn), and hexavolent chramium (Cr*⁶), reparted here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves Grovimetric determination Annual mation and range, respectively. Colculated from analyses of dupticate monthly samples made by California Department of Public Health, Duvision of Loboratores, or United Stones Public Health Service Minaral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Constitution (USBR); United States Department of Water and Power (LADMP); City of Los Angeles, Department of Nature (SECFCD); Marrapoliton Water District of Southern Californio (UMD); Los Angeles, Department of Water Resources (DMR); City of Los Angeles, Department of Public Health (LBDPH); Terminal Testing Lebaratories, Inc. (TIL); or Californio Department of Water Resources (DMR); as indicated. | _ | _ | | | | | | | | | | | | | | | |-------------------|-------------------------|---|-----|--|------------------|-------------------------------------|------------------|------------------|----------------|-----------------------|----------|--------|------------------|--------|---| | L | | Anolyzed
by f | | | USGS | | | | | | Sosi | | | usgs | | | | | bid - Coliform | | | 62. | :
55 | 230. | 2400°.
620°. | 2,400. | 620. | | | | | | | | Tur | - pid - | | | 20 | 97 | IJ | 15 | 9 | 70 | | 100 | | 110 | | | Γ | | Nordness
es CaCO ₃ | 100 | | 19 | 88 | 54 | 114 | 0 | 0 | | 27 | | 28 | | | | | Totol | E . | | 205 | 288 | 296 | 296 | 356 | 462 | | 116 | | 119 | | | | - 10-4 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 22 | 25 | 94 | 56 | 95 | 36 | | 19 | | 21 | | | | Total | in poly | | | 297 ^e | 460 ⁸ | 661 ^e | 806 ^e | 818 | 8948 | | 1888 | | 2008 | | | | | Other constituents | | | 8
0
0 | ABS = 0.0
PO ₄ = 0.00 | | | 000 | ABS = 1.5
PO4 = 13 | | | | | | | | 1 | Silico
(SiO ₂) | 1 | | | 23 | | | | 07 | | : | 221) | 29 | | | | ē | Boron S
(8) | | | 1.0 | 0.1 | 7.0 | 9.6 | 0.4 | 0.3 | (STA. | 3 | (STA, 2 | 0,1 | | | million | equivolents per million | Fluo-
ride
(F) | | | | 0.02 | | | | 0.03 | Z | 0.01 | TUALAR (C | 0.1 | | | ports per million | lents | trote
(NOL) | , | (STA. | | 3,1 | | | | 2.0 | NEAR SE | 0.05 | NEAR CHUALAR | 3.5 | | | ٥ | equivo | Chio | | RECKEILS | 21 0.59 | 38 | 3.55 | 3.61 | 144 | 147 | BRIDGE | 0.28 | BRIDGE | 0.28 | | | | ç | Sul -
fote
(SO.) | | SALINAS RIVER NEAR SPRECKEIS (STA. 43) | | 129 | | | | 45 | NACTTI | 0.83 | CHUALAR | 46 | | | | etituent | Bicor-
bonote | , | RIVER | 165 | 3.54 | 308 | 3.64 | 450 | 9.80 | ER AT H | 1.79 | VER AT | 105 | | | | Mineral constituents | Corbon- | , | SALINAS | 0.20 | 14 0.47 | 0.40 | 0.00 | 0.00 | 00.00 | INAS RIV | 00.00 | SALINAS RIVER AT | 0.10 | _ | | | Min | Potos-
sium
(K) | | | | 3,0 | | • | | 35 | SAL | 0.07 | - 83 - | 2.9 | | | | | Sodium
(NO) | | | 26 | 1.91 | 114 | 144 | 139 | 130 | 5 | 0.57 | | 0.65 | | | | | Mogne- | | | 4.10 | 23 | 5.916 | 5.92 | 7.12c | 3.90 | | 0.72 | | 0.78 | | | | | Colcium
(Co) | | | | 3,84 | | | | 5,34 | | 1.60 | | 32 | | | | | E of | | | 8.3 | 8.6 | 8.5 | 8 · 1
8 · 0 | 8.0 | 8.0 | | 7.5 | | 8.4 | | | | Specific | (micrombos at at 25°C) | | | 067 | 217 | 1,090 | 1,330 | 1,350 | 1,440 | | 296 | | 304 | | | | | gen o | | | 86 | 139 | 210 | 218 | 161 | 110 | | | | | | | | | Disac | | | 6.6 | 12.1 | 18.9 | 18.1 | 16.0 | 5.6 | | | | | | | | | Ten
P | | | 63 | 73 | 70 | 78 | 77 | 74 | | 09 | | 61.5 | | | | | Oschorge Temp | | | 240 | 120 | 3.5 | 2.0 | 1.4 | 3.3 | | | | | | | | | ond time
compled | | | 4-9-63 | 5-16-63 | 6-4-63 | 7-2-63 | 8-6-63
1315 | 9-5-63 | | 2-4-63 | | 2-4-63 | | Loborotory pH c. Sum of calcium and magnessum in spm. d level (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr*6), reported here as $\frac{0.0}{0.00}$ except as shown. d Iran (Fe), aluminum (A1), arsence (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (A1), arsence (As). Sum of calcium and magnessum in apm. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents. ³²⁵⁰⁵⁻D-8 6-61 200 SPO h. Annual median and range, respectively. Celeculated from analyses of duplicate monthly samples mode by California Debatic Health, Division of Lobarianises, or United Stores Public Health Service and the Debatic Health Service and the Debatic Health Service of Reclamation (USBR), United Stores California Chieful Debatic Health Service (USPHS), San Bernadine Caunty Flood Cannot (Carlo Service) and Carlo Service (USPHS), Los Angeles, Depatrment of Marte and Power (LDMP), City of Los Angeles, Depatrment of Public Health & Lab Phil. City of Los Angeles, Depatrment of Public Health & Lab Phil. City of Los Angeles, Depatrment of Marte Resources (DMR) as indicated. | _ | _ | | | | | | | | | | | | | | | |-------------------|----------------------
---|---|-------------|-----------------------------|------------------|--|---------|--|--------------------|---------------------------------------|------------------|------------------|------------------|--| | | | Anolyzed
by i | | 0.8CS | | oscs | | 0565 | | USGS | | 0SGS | | | | | | | es CoCO _S 11y MPN/mi
Totol N C nppm | | | | | | | | | | ដូ ដ | 6.2 | 2.3 | | | | | - × 4 - × 6 | | 20 | | 30 | | 07 | | 120 | | 15 | n | 7 | | | T | | S COS | | 57 | | 777 | | 39 | | 1,130 | | 18 | 13 | 14 | | | | | Mordness
as CoCO _S
Totol N C | | 105 | | 164 | | 164 | | 40 1,300 | | 116 | 130 | 133 | | | | - | - pos | | 16 | | 21 | | 21 | | | | 17 | 17 | 18 | | | | Totol | solved
solids
in pon | | 1688 | | 2708 | | 2668 | | 3,160 ⁸ | | 173 ^e | 192 ^e | 201 ^e | | | | | Other constituents | | | - 0 - | | | | | | | | | | | | | | (SiOg) | | | A. 224) | - 2 6 | \. 223) | 25 | | 28 | | -1 | | | | | 40 | par million | Boron
(B) | (603) | 0.0 | — cas (st
— | 70 | | 11 0.1 | - 500 | 150 | | 0.5 | 0,1 | 0.1 | | | il m | par | Flua-
rida
(F) | SIA, 2 | 0.01 | - SAN LUI | 0.01 | — SAN - | 0.01 | (STA | 0.05 | _ 3° _ | | | | | | parts per millian | squivalents | rrate
(NO ₃) | LEDAD | 0.02 | NEAR | 0.05 | NEAR | 2.2 | ARDO | 0.16 | STA, 4 | | | | | | | Ainba | Chio-
ride
(Ci) | ARROYO SECO RIVER NEAR SOLEDAD (STA. 203) | 0.16 | BRIDGE NEAR SAN LUCAS (STA. | 0.45 | SALINAS RIVER AT SAN ARDO BRIDGE NEAR SAN ARDO (STA. | 0.45 | PANCHO RICO CREEK NEAR SAN ARDO (STA. 220) | 144 | SALINAS RIVER NEAR BRADLEY (STA. 43c) | 0.37 | 0.23 | 9.1 | | | | ë | Sul -
fats
(SO ₄) | RIVER | 37 | N LUCAS | 1.31 | AN ARD | 58 | CREEK 1 | 34.35 | NEAR BR | | | | | | | afitent | Bicar-
banate
(HCO ₃) | YO SECO | 1.62 | R AT SA | 2,33 | TER AT S | 2.36 | O RICO | 3,25 | RIVER | 11.95 | 2,34 | 2.38 | | | | Minaral constituents | Carbon-
ate
(CO ₃) | ARR0. | 0.0 | SALINAS RIVER AI SAN LUCAS | 0.17 | INAS RIV | 0.13 | PANCH | 0.13 | SALINAS | 00.0 | 0.0 | 0.00 | | | : | N. | Potas- Carbon-
sum
(K) (CO ₃) | | 2.5
0.07 | SALIN | 2.9 | - SAL | 2.8 | | 0.31 | | - | | | | | | | Sodium
(Na) | | 9.7 | | 21 0.91 | | 20 0.87 | | 400 | | 11 0.48 | 0.52 | 0.57 | | | | | Magna-
sium
(Mg) | | 0.00 | | 1.18 | | 1,18 | | 14.2 | | 2,32c | 2,60€ | 2,670 | | | | | Calcium
(Ca) | | 30 | | 42
2,10 | | 2,10 | | 285 | | | - | | | | | | | | 8.2 | | 00
00 | | 4.8 | | 8.3
E. | | 8.1 | 7.9 | 7.8 | | | | Spacific | conductance pH
(micramhas
at 25°C) 3 | | 253 | | 907 | | 403 | | 3,550 | | 270 | 300 | 314 | | | | | oso% | | | | | | | | | | 104 | 101 | 100 | | | | | Disso
osy
ppm | | | | | | | | | | 4.6 | 9.7 | 0, | | | | | Temp
In of | | 39 | | -1
9 | | 19 | | | | 89 | 6.2 | 9 | | | | | Discharge Temp
in cite in of | | | | | | | | | | 470 | 244 | 260 | | | | | Dots
and time
sampled
P S T | | 2-4-03 | | 2-4-03 | | 2-4-63 | | 2-18-53
1430 | | 10-2-02 | 11-6-62
,200 | :2-3-62
1600 | | a Field pH ONTO 002 TO-5 ATM-5052E Laboratary pH. Sum of calcium and magnessum in sem. Sum of calcium and magnessum in sem. Iron (Fe), oluminum (A1), assence (A3), copper (Cu), lead (Pb), manganese (An), zinc (Zn), and heavailent chromium (C1 - 5), reparted here as 0 0 except as shawn. Sum of calcium and magnesium in epm. Determined by addition of analyzed constituents Derived from canductivity vs TDS curves h Amual median and rang, respectively Calculated from analyses of displicate monthly samples made by Calculation Department of Public Health, Division of Lobardonies, or United States Public Health Service (USPHS), San Benardino County Flood County Disputs Block by United States Geological Survey, Quality of Wester Banch (USC), United States District Block B ### ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) | | | | E E/N | | | | 2.3 | | |---|-------------------|-------------------------|--|--------------------|---|---------------------------------------|------------|------------------| | | L | _ | E Co | | _ | |
0 7 | 62. | | | L | - | Hordness bid - Coliform | | | |
. ~ | 20 | | | | | dnes. | D € | | |
69 | 67 | | | | | 5 5 | Totol | | |
28 2:9 | 21 184 | | ĺ | L | | 900 | | | |
28 | | | | | Total | pevios
polios | E dd c | | | 431e | 289 ^e | | | | | 440 | | | | | | | | | | Silico | (2:0) | | | | | | | | lion | Boron | <u>=</u> | | | 0.1 | 0.1 | | | million | ser mi | Fluo- Boron Silice | (F) | | ਹ | | | | | ports per million | eguivolents per million | - IN | | | SIA. 43 | | | | | ۵ | # gurvi | Cnio- | (i) | | MOLEY | 36 | 16 | | | | = | Sui - | (804) | | NEAR BE | | | | | | | Bicar - | (HCO3) | | SALINAS RIVER NEAR BRADLEY (SIA, 43c) | 3.47 | 2.82 | | | | #101 CON | Corbon- | (co ₃) | | SALINA | 0.33 | 0.0 | | | 1 | | Potos. | (X) | | | | | | | | | Sodium | (o z | | | 2.04 | 23 | | | | | Mogne- | (Mg) | | | 5,190 | 3,680 | | | | | Colcium | (°2) | | | | | | | L | | I o | م | | | 8.3 | 8.0 | | | | Specific | Conductance PH Mogne- Sodium Potos- Corbon- Bicar- S | | | | 673 | 451 | | | | | D C | %Sot | | | 132 | 66 | | | | | Dissolved | mad | _ | | 14.3 | 10.0 | | | | | Temp
in OF | | | | 52 | 58 | | | | | Dischorge Temp | | | | 174 | 097 | | | H | - | | - | - | | | | Analyzed by 1 USGS 0.23 5. 23. 25 27 18 16 401% PO. = 0.30 28 - 0.02 0.0 96 212 234 0.33 2.2 21 62 0.00 4.88c 2.54c 8.2 73 58 99 59 6-4-63 7-2-63 17 5-15-63 4-9-63 131 134 3.15 0.23 30 37 42 13 11 10 0.1 0.0 0.1 S 9 9 10 52 16 403 195° 180 2,400. 2.3 > 9 35 20 43 20 234 212 240 244 3836 326° 0.2 0.1 26 19 24 25 8.7 0.18 6.0 28 3,31 36 4.68c 4.24c 8.2 8.1 8.5 > 11.4 9.8 7.0 6.8 09 61 3-5-63 451 599 509 587 629 304 281 66 116 101 83 80 84 2-6-63 17 097 150 331 200 70 Date ond
time sompled P S T 289^e 21 25 23 230. 2.3 6.2 12 122 119 15 1778 As = 0.04 ABS = 0.0 PO₄ = 0.10 77 0.0 0.01 0.00 129 0.04 13 27 7.8 3 9.6 0.00 2.440 8.2 10.4 534 500 8.3 8.5 077 | Sa | | | |---------|---|---| | | | | | 30 | | | | 28 | | | | 137 | | | | 15 | | | | 2188 | | | | | | | | | | | | | | | | 34 | | | | | | | | 0.00 | | | | 0.03 | | | | 61.0 | | | | 44 0.92 | | | | | | | | 00.0 | | | | 9 70 | | | | 11 2 | | | | 00 78: | | | | 8 6 | | | | 12 | | | | | | | | 30 | | | | | | | | | | | | 61 | | | | | | | | 7 | | Holde | | 2-4-6. | | LL. | | | | | | | $\frac{38}{6.2} \frac{10}{1.90} \frac{11}{0.44} \frac{2.6}{0.48} \frac{0}{0.05} \frac{113}{0.00} \frac{4.6}{2.18} \frac{6.8}{0.32} \frac{1.2}{0.19} \frac{0.0}{0.00} \frac{0.0}{0.00} \frac{3.6}{0.00} \frac{13}{0.00} \frac{11}{0.00} \frac{11}{0.$ | 61 305 6.2 1.99 0.84 0.48 0.07 0.00 2.18 0.09 0.09 0.09 0.09 0.00 0.09 0.09 0.0 | Ses Sum of colcium and magnesium in epm Loborotory pH Sum of colcum and magnessum in spin from [Fe], aluminum (A1), asseme (A3), capper (Cu), lead (Pb), manginess (Mn), sinc (Zn), and hexavolent chramium (Cr.*), reparred here as 0 0 except as shown 100 fres. Derived from conductivity vs TDS curves Determined by addition of analyzed constituents Annual median and singes Paleulated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service Minned analyses made by United States Geological Survey, Dupling Methods Exposed Brooks (USS), United States Department of the Institut (SECTIO), Memoryation (MDD), Las Analete Department of Marker and Power (USMP), City of Los Angeles, Department of Public Health States (USMP), City of Los Angeles, Department of Public Health States (USMP), City of Los Angeles, Department of Dublic Health, City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Department of Dublic Health States (USMP), City of Los Angeles, Dublic Health States (USMP), City of Grovimetric determination 32505-B-H 6-61 200 JPO Ammal median and stages treasstrively. Calculated from analyses of displacene monthly samples made by Caldianna Department of Public Health, Division of Lobbosonaries, and the both Service Manual analyses, made by United States Geological Survey, Quality of Mene Branch (1935). Juned States Department of the Interiors, Bureas of Reclamation (1938). United States Geology Ge ANALYSES OF SURFACE WATER CENTRAL COASTAL REGION (NO. 3) TABLE D-2 | | pez | | | | | | | | | | | | | | | | | |-------------------------|----------------------------------|---------------------|--|---|---------|-----------------|---------|---------|----------------|--------|------------------|------------------------|--------|-----------|--------|--------|------| | | Anolyzed
by 1 | | | - | 280 | | | | | | | | | | | | | | | bid - Coliform | | | | | | 6.2 | 0.62 | 62. | 0.62 | 6.2 | 6.2 | 2.3 | 62. | | | | | Total | - Pid - | | | | | | 7 | η. | ~ | 4 | 10 | 9 | 'n | - | | | | | | Hordness
es CoCO _S | Total N C | | | | | 34 | 6,3 | 30 | 31 | 35 | 32 | 38 | 42 | | | | | | | | | | | | 201 | 202 | 148 | 169 | 156 | 170 | 186 | 190 | | | | | | 1 00 m | | | | | | 24 | 81 | :1 | 14 | 13 | 16 | 15 | 16 | - | | | | Total | solids
solids | F 00 r | | | | | 316 | 302 | 215 | 249 | 220 ^e | 261 ⁸ | 261 | 276 | | | | | | Other constituents | - 1 | | | | | | | | | | PO ₄ = 0.20 | | | | | | | | Silico | (3)(C) | | | | | | | | | | 28 | | | | | | | llion | Boron | 9 | | | | | 0.0 | 0:1 | 0.1 | 0.0 | 0.1 | 0,0 | 0.0 | 0.0 | | | | | millio
per m | Fluo- | (F) | 34) | | | | | | | | | 0.0 | | | | | | | squivolents per million | N:- | (NO ₃) | SIA. 43 | | | | | | | | | 0.02 | | | | | | | oving & | Chio- | (0) | OTYTE | _ | | | 19 | 16 | 7.5 | 7.8 | 6.0 | 7.5 | 8.8 | 10 | | | | | Ē | Sul - | (\$05) | NEAR 1 | | | | | | | | | 55 | | | | | | | strates | Bicor- | (HCO ₃) | IO RIVER | | | | 3.34 | 3.18 | 2.36 | 158 | 148 | 160 | 160 | 2.75 | | | | | Mineral constituents | Corbon | (500) | SAN ANTONIO RIVER NEAR PLEYTO (STA. 434) | | | | 00.0 | 0.00 | 0.00 | 0.17 | 0.00 | 0.13 | 0.33 | 0.20 | | | | | Min | Polos- | (K) | 3 | _ | | | | | | | | 0.05 | | | | | | | | Sodium | (NO) | | | | | 30 | 20 0.87 | 12 | 13 | 0.48 | 15 | 15 | 17 0 . 74 | | | | | | Mogne- | | | | | | 4.02 | 4.040 | 2.960 | 3,380 | 3,130 | 1.05 | 3.726 | 3.80€ | | | | | | _ | (00) | | | | | | | | | | 2.35 | | | | | | | | Ĩ, | م | | | | | 8.2 | 8.2 | 2.7 | 9.0 | 7.9 | 0.8 | . 8 | 8.4 | | | | | | conductonce
(micrombos) | 0 | | | | | 887 | 997 | 332 | 385 | 340 | 379 | 707 | 427 | | | | | | 7 8 E | 'o Sot | | | | | 66 | 100 | 66 | 66 | 98 | 86 | 93 | 88 | | | | | | Dissolvad | ppm %Sat | | | | | 9.6 | 10.5 | 6.6 | 9.6 | 9.6 | 0.8 | 7.8 | 8.2 | | |
 | | | Ten or | | | | | | 61 | 55 | 65 | 61 | 62 | 7.8 | 7.5 | 69 | | | | | | Dischorge Temp | | | | Dry | Ponded | 0.3 | 6.0 | 300 | 122 | 200 | 105 | 90 | 16 | Ponded | Pry | | | | Dote ond time | P.S.T | | | 10-2-62 | 11-6-62
1250 | 12-3-62 | 1-8-63 | 2-6-63
1200 | 3-5-63 | 4-9-63
1250 | 5-15-63 | 0-4-63 | 7-2-63 | 8-6-63 | 9-4-63 | | o Freld pH b Laborotory pH Sum of calcium and magnesium in sem. Sum of calcium and magnessum in sem. Iran (Fe), aluminum (A), orsenic (As), capper (Cu), lead (Pb), manganese (An), zinc (Zn), and hexavalent chromium (A'), reparted here as 0 0 except as shown. c. Sum of calcium and magnesium in epm. e Derived from conductivity vs TDS curves Determined by addition of analyzed constituents | _ | _ | - T | | | | | | | | | | | | | | | | |-------------------|-------------------------|---|--|---------|-----------|---------|-----------|------------------|------------------|------------------|---------|---------|--------|------------|------------------|-------------------------|--| | | | Anolyzed
by 1 | | | USGS | | | | | | | | | | | | | | | | bid - Coliform | | | 62. | 23. | 23. | 13. | 62. | 0.21 | | | | 23. | 62. | 2.1 | | | | - 30 | - piq - | | | 15 | е. | 2 | 5 | 7 | • | | | | 2 | 5 | 4 | | | | | Ae CoCOs
Total N C | | | 6 | 00 | 13 | 9 | 15 | 17 | | | | 18 | 15 | 16 | | | | | | | | 110 | 116 | 120 | 157 | 158 | 166 | | | | 116 | 116 | 116 | | | | | - 900 | | | 14 | 71 | 15 | 14 | 13 | ถ | | | | 51 | 13 | ដ | | | L | Total |
police
police
in pom | | | 138 | 158 | 164 | 211 ^e | 209 ^e | 220 ^e | | | | 156 | 157 ^e | 1578 | | | | | Other constituents | | | | | | | | | | | | | 8 | ABS = 0.0
PO, = 0.10 | | | | | (5.0 ₀) | | | | | | | | | | | | | | ্ৰা | | | | LO1 | Boron
(B) | | | 0.2 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | | | | 0.0 | 0.1 | 0.0 | | | ports per million | equivalents per million | Fluo-
rids
(F) | 1767 | | | | | | | | | | | | | 0.01 | | | ris per | erre | Ni-
trate
(NO _S) | 4 1.0) | - | | | | | | | | | | | | 0.02 | | | 00 | equivo | Chio-
ride
(Ci) | - 1 | | 0.18 | 0.16 | 6.9 | 0.31 | 8.2 | 0.25 | - | | | 6.0 | 6.0 | 5.8 | | | | Ē | Sul -
fate
(SO ₄) | 0 | - W | | | | | | | | | | | | 0.44 | | | | 1.tuents | Bicar -
bonate
(HCO _S) | 931 | TANEN W | 2.02 | 132 | 130 | 2.90 | 174 | 182 | | | | 1.97 | 2.02 | 2.00 | | | | Mineral constituents | ote
CCO ₃) | NACTURE MAD SIVED SIVE COMMUNICATION (OTT. 12) | | 0.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | | | | 000 | 00.0 | 0.00 | | | | Miner | Potos- Corbon-
sum
(K) (CO ₃) | - 5 | - Tagai | | | | | | | | | | | | 0.05 | | | | | Sodium
(No) | | | 8.1 | 8.6 | 9.4 | 0.52 | 11 0.48 | 11 0.48 | | | | 7.9 | 7.8 | 7.8 | | | | | Mogne- 5
srum
(Mg) | | | 2.21c | 2,320 | 2.40€ | 3.15c | 3.160 | 3.32¢ | | | | 2.320 | 2.325 | 1.02 | | | | | Calcium (Ca) | | | | | | | | | | | | | | 26 | | | | | I e | | | 8.2 | 7.9 | 8.0 | 7.4 | 7.8 | 8.1 | | | | 8.2 | 8.0 | 7.9 | | | | 2191200 | (m.crombos e | | | 228 | 261 | 272 | 349 | 346 | 364 | | | | 258 | 260 | 259 | | | F | U | No Sof | | | 147 | 112 | 100 | 82 | 103 | 115 | | | | 110 | 106 | 92.\$ | | | | | Dissolved
oxygen
ppm %Sot | | _ | 13.4 | 10.4 | 8.6 | 8.7 | 6.6 | 10.8 | | | | 11.11 | 11.11 | 8.6 | | | - | - | | | | 67 | 65 | 09 | 54 | 62 | 759 | | | | 80.0 | 55 | 54 | | | | | Dischorge Temp | | | 500(est.) | 255 | 200(est.) | 4(est.) | 5(est.) | 2(est.) | No flow | Ponded | Ponded | 500 (est.) | 000 (est.) | 500(set.) | | | | | Dote
ond time
eampled
P S.T. | | | 10-2-62 | 11-6-62 | 12-3-62 | 1-8-63 | 2-6-63 | 3-5-63 | 4-9-63 | 5-15-63 | 6-4-63 | 7-2-63 | 8-6-63 | 9-4-63 | | Loborotory pH. Sum of colcium and magnessum in spim. Iron (Fe), oluminum (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (An), zinc (Zn), and hexavalent chromium (Cr ⁵), reparted here as $\frac{0}{0}$ 0 except as shown. c Sum of calcium and magnessum in epm. Derived from conductivity vs TDS curves. Determined by addition of analyzed constituents. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calidonia Department of Public Health, Division of Labaratories, or United Stores Public Health, Service (USCHS), Lanted Stores Department of the Interior, Gueero of Rectamation (USGR), United Stores Department of the Interior, Gueero of Rectamation (USGR), United Stores Calculated (USCHS), Marripolitan Marris (MEGECD), Marrisophitan Marrisophitan (MAD), Los Angeles Department of Marris (MEGECD), Marrisophitan (MAD), Los Angeles Department of Marrisophitan (MAD), City of Los Angeles, Department of Public Health (LBDPH), Terminal Testing Laboratories, Inc. (TLL), or California Department of West, or and careful OF ON THE PASSESSE ANALYSES OF SURFACE WATER TABLE D-2 CLEMAN COASIAL COLORS 3) | | | nyzed
y i | | USGS | | | | | | | | | | | | | | 1 | |-------------------|-------------------------|--|---|---------|---|---------|---------|--------------|----------------|------------------|------------------|--------|------------------------|------------------|--------|--------|--------|---| | - | | Hordnass bid - Coliform Analyzed as CoCD ₃ Ity MPN/ml by i Totol N C. pom com | | ns
n | | | | | | | | | | | | | | - | | | | MPN/m | | | | | | | | 620 _* | 23. | 23. | 190. | 620. | | | | | | | - | - ty
n again | | 35 | | | | | | 4 | 1 | 25 | 2 | 3 | | | | | | | | Hordness
as CoCD ₃
Total N.C.
pam pam | | = | | | | | | 85 | 107 | 72 | 92 | 117 | | | | | | - | | Toto
Pen | - | 62 | | | | | | 279 | 338 | 274 | 320 | 370 | | | | | | - | | solved sod | | 15 | | | | | | 18 | e 21 | e 17 | 8 18 | P 23 | | | | | | | Tote | evios
ni oo ni | | 1018 | | | | | | 412° | 514 ^e | 400e | 4548 | 571 ^e | | | | | | | | Other constituents | | | | | | | | | | | Po ₄ = 0.25 | | | | | | | | | Sifica
(SiO ₂) | | = | | | | | | | - | | 20 | | | | | - | | | Ilian | Baran
(B) | | 0.0 | | | | | | 0.2 | 0.2 | 0,1 | 0.0 | 0,1 | | | | | | millia | per mi | Fluo-
ride
(F) | LA. 24 | 0.0 | 438) | | | | | | | | 0.0 | | | | | | | parts per millian | equivalents per millian | rate
(ND ₃) | NET (S | 4.1 | (STA. | | | | | | | | 0,02 | | | | | - | | å | equivo | Chia-
ride
(C.) | SAN NIG | 3.8 | ROBLES | | | | | 26 | 36 | 23 | 29 | 49 | | | | - | | | e. | Sul -
tota
(SO ₄) | AM NEAR | 0,31 | AT PASC | | | | | | | | 116 | | | | | | | | stifuents | Bicar-
banate
(HCD ₃) | KE AT D | 62 | SALINAS RIVER AT PASO ROBLES (STA, 43a) | | | | - | 3,87 | 258 | 246 | 258 | 287 | | | | | | | Mineral constituents | Patos- Carbon-
sum ate
(K) (CO ₃) | NACINIENTO LAKE AT DAM NEAR SAN MIGUEL (STA. 247) | 00*00 | SALINA | | | | | 00.00 | 12 | 0,00 | 10 | 12
0,40 | | | | | | : | Mine | Patas-
Sium
(K) | NACEMI | 0.03 | | | | | | | | | 1.7 | | | | | | | | | Sadium
(No) | | 5.2 | | | | | | 28 | 41 | 26 | 32 | 52,26 | | | | | | | | Magne-
sium
(Mg) | | 6.6 | | | | | | 5,58c | 6.760 | 5,490 | 28 2.31 | 7,400 | | | | | | | | Calcium
(Ca) | | 14 | | | | | | | | | 82 4.09 | | | | | | | | | nle I | | 8.0 | | | | | | 8.1 | 8.1 | 8.0 | 8,5 | 8.8 | | | | | | | Spacific | (micramhas
at 25°C) | | 148 | | | | | | 628 | 783 | 610 | 169 | 870 | | | | | | | | lvad
%So | | | | | | | | 9.6 | 109 | 97 | 110 | 109 | | | | 1 | | | | | | | | | | | | 9.2 | 63 10,4 | 6.8 | 8.6 | 8.7 | | | | | | | | Tenp
in of | | 99 | | | | | | 62 | 63 | 99 | 82 | 80 | | | | - | | | | Dischorge Temp | | | | , ry | Dry | lry | Dry | 33 | 38 | 130 | 9 | 15 | iiry | Dry | hry | | | | | and time
sompled
P.S.T. | | 2-4-63 | | 10-2-62 | 11-6-62 | 12-4-62 0900 | 1-8-63
1500 | 2-6-63 | 3-5-63 | 4-9-63 | 5-15-63
1615 | 6-4-63 | 7-2-63 | 8-6-63 | 9-4-63 | | b Laboratory pH a Field pH. January Carlow and Angeles and Carlow (Ca), lead (Pb), rangenese (Mn), zinc (Zn), and hoxavalent chramium (Ci *9), reported here as 0 0 except as shawn. c Sum of colcium and magnesium in epm. Determined by addition of analyzed constituents Derived from conductivity vs TDS curves Gravimetric determination. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calrbania Department of Public Hoolin, Division of Labbranianes, or United States Public Health Service. Marenal analyses made by United States Geological Survey, Quality of Water Broach (USSS); United States Department of the Internation of Prover (USRPS); United States Department of Service (USRPS). San Bennadon County Flood Control District (USRPS): Department of Service (USRPS). San Bennadon County Flood Count District (USRPS): Department of Service (USRPS): San Bennadon County Flood Public Health (Labbra): Farming Telephonories, Inc. (TILL), or California Observment of Water Resources (USRS): an infection of County Service. | Comparison | 3 | | ports per million | lion | | _ | | | |---|--|--|--|--|---------------------------|---|-------------------|------------------| | Try | Min | Mineral
constituents in | equivolents par | par million | Total | | | | | 2.8 57 10.8 105 424 8.7
4.8 57 10.8 113 540 7.4
5.0 50 11.1 99 444 8.2
5.0 50 10.4 99 185 7.4
5.0 50 10.5 10.2 239 8.7
5.0 60 8.8 89 225 8.2
5.0 60 7 74 10.6 103 242 8.2
5.0 60 7 7 10.6 10.5 119 249 8.2 | Colcium Mogne: Sodium Polos- Corbon—(Co) (Mg) (No) (K) | Corbon Bicor Sul
ote bonota fois
(CO ₃) (HCO ₃) (SO ₄) | Chio- Ni- Fluo-
ride trote ride
(NO ₃) (F) | Boron Silico
(B) (SiO ₂) | Other constituents in opm | Hordness
os CoCO ₃
Toto! N C | bid - Coliform An | Anolyzad
by i | | 2.8 57 10.8 105 424 7.4
4.8 56 11.8 113 550 8.2
2.0 50 11.1 99 444 8.2
2.0 52 10.4 99 185 7.6
95 52 11.2 102 239 8.7
240 54 10.4 97 215 8.7
132 62 10.0 103 222 8.7
100 60 8.8 89 225 8.7
23 70 10.5 119 295 8.7
0.7 74 10.6 125 338 8.4 | | | | | | | | | | 2.8 57 10.8 105 424 8.1
4.8 57 11.8 113 550 7.4
2.0 50 11.1 99 444 8.2
2.0 55 10.4 99 1185 7.4
95 32 11.2 102 239 8.1
240 54 10.4 97 215 8.1
100 60 8.8 89 225 8.2
23 70 10.5 119 295 8.2
23 70 10.5 119 295 8.2
0.7 74 10.6 125 338 8.1 | | ARMEL RIVER AT ROSLE | CARMEL RIVER AT ROBLES OEL RIO (STA. 83) | | | | | | | 2.8 57 10.8 105 45h 61.1
4.8 56 11.1 99 4th 61.2
2.50 55 10.4 99 1185 7.4
2.50 56 11.1 99 4th 61.0
2.50 57 10.4 99 1185 7.4
2.60 56 10.4 97 215 6.7
132 62 10.0 103 242 8.7
110 60 8.8 89 225 8.0
2.3 70 10.5 119 295 8.2
2.3 70 10.5 119 295 8.2
2.3 70 10.5 119 295 8.2
2.0 77 | | | | | | | | | | 4,8 56 11.8 113 540 $\frac{7.6}{6.2}$ 7,0 50 11.1 99 414 $\frac{7.4}{8.70}$ 250 55 10.4 99 1185 $\frac{7.6}{7.0}$ 95 32 11.2 102 239 $\frac{8.1}{8.1}$ 260 54 10.4 97 213 $\frac{8.1}{8.1}$ 113 62 10.0 103 242 $\frac{8.0}{8.0}$ 110 60 8.8 89 225 $\frac{8.2}{8.0}$ 23 70 10.5 119 295 $\frac{8.2}{8.7}$ 077 74 10.6 125 338 $\frac{8.1}{8.4}$ | 3,26c 1,44 | 0 160 2.62 | 0,68 | 0.0 | 28116 3 | 31 163 37 1 | 21. | | | 1,0 50 11,1 99 444 61,0 250 55 10,4 99 1185 7,6 95 32 11,2 102 239 7,6 240 34 10,4 97 215 8,1 132 82 10,0 103 242 8,1 110 60 8,8 89 225 8,0 23 70 10,5 119 295 8,2 24 0,7 74 10,6 125 338 8,1 977 | 3.81 c 1.78 | 0,00 2,84 | 36 | 0 0 0 | 333° 3. | 32 190 48 1 | 21. | | | 250 55 10.4 99 185 7.76
95 52 11.2 102 239 6.1.5
240 54 10.4 97 215 8.1.5
132 62 10.0 103 242 8.0
140 60 8.8 89 225 8.0
23 70 10.5 119 295 8.2
0.7 74 10.6 125 358 8.4 | 2,900 1,22 | 0 146 | 20 0.73 | 0.0 | 255° 29 | 29 148 28 1 | 2.3 | | | 240 54 11.2 102 239 4.6.1.1 240 54 10.4 97 21> 8.1.1 132 62 10.0 103 242 2.2.8 110 60 8.8 89 225 8.0 23 70 10.5 119 295 8.2 0.7 74 10.6 125 358 8.4 | 1,32c 0,4 | 0 /8 | 8.0 | 0 | 114° 24 | 24 68 4 2 | 13. | | | 240 54 10,4 97 213 31,4 31,1 31,2 31,1 31,2 31,1 31,2 | 1.84c 0.52 | 0 102 0.00 1.67 | 10 | 0.0 | 1476 22 | 92 8 | 1.3 | | | 132 62 10.0 103 242 3.8 8.0 8.0 11.0 8.0 11.0 11.0 11.0 11.0 | 1,70c 0,44 | 0,00 | 8.5 | 0.0 | 1336 21 | 5 5 2 | 23. | | | 100 60 8,8 89 225
23 70 10,5 119 295
0,7 74 10,6 125 358 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0,00 1,74 0,50 | 9.8
0.78 0.02 | $\frac{0.3}{0.02}$ $\frac{0.0}{0.02}$ $\frac{26}{0.49}$ 0.19 | 0,19 158 ^K 23 | 3 93 6 2 | 0,62 | | | 23 70 10.5 119 295
0.7 74 10.6 125 388 | 1,940 0,48 | 4
0.13 1.67 | 8.4 | 0.0 | 139 20 | 20 97 7 5 | 23. | | | 0.7 74 10.6 125 358 | 2,28c 0,70 | 0 126 0.00 | 12 (1,34 | 0*0 | 182 ^e 2' | 23 114 11 1 | 6.2 | | | | 2,684 1,00 | \$\frac{5}{0.17} \frac{127}{2.08} | 18 0,51 | 0.0 | 221 ^e 27 | 7 134 27 1 | 2 1, 23, | b Loborotory pH e. Sun of colcium and magnesium in open. (Cu), leed (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (Cr¹⁹), reported here as 0.0 except as shown d Iron (Fa), aluminum (A1), arsanic (A3), copper (Cu), leed (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (A1), orsanic (A3), copper (Cu), leed (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (A1), orsanic (A3), copper (Cu), leed (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (Cr¹⁹), reported here as a construction of the o Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves. 9 General determination Annual mediane, categoriesty. Calculated from analyses of diplicate monthly samples made by California Department of Public Health, Division of Laboritories, or United Stores Public Health Service Manual medianes smaller by Interd Stores Geological Survey, Duality of Waler Drawel, (USSS), United Stores Department of the Interior of Reciamation (USBR), United Stores Public Health Service (USPHS), San Bernoidino Cawary Flood Cawari District (USBP), Remoderance and Carlo Stores Carlo Car 2 ### TABLE D-2 # ANALYSES OF SURFACE WATER SOUTH BAY AQUEDUCT | _ | _ | | | | | | | | | | | | | | | | | |-------------------|-------------|--|--------------|---------|-----------------|----------|-----------------|--|--------|---------|--------|-----------------|---------|---------|---------|-----------------|----------------------------------| | | | Analyzed
by § | | DWR | | | | | | | | | | | | | | | | 4 | bid - Californ'i
11y MPN/mi
In opm | | | | | | | | | | | | | | | | | | Tu'- | - piq -
11 y
In ppm | | | | | | | | | | | | | | | | | | | SOS COS | | 35 | 52 | 09 | 59 | | 57 | 63 | 69 | 70 | 63 | 28 | 72 | 89 | 69 | | | | | | 129 | 154 | 170 | 168 | 170 | 169 | 175 | 181 | 182 | 161 | 153 | 163 | 160 | 164 | | | Par- | eod - | | 51 | 53 | 54 | 53 | | 54 | 54 | 54 | 55 | 57 | 53 | 53 | 51 | 52 | | | Total | solved
solids
in ppm | | 349 | 727 | 687 | 443 | 471 | 480 | 887 | 187 | 509 | 396 | 374 | 417 | 477 | 877 | | | | Othsr constituents | | | | | | A1=0.78 Mn=0.00
As=0.00 Zn=0.01
Cu=0.00 Se=0.000
Pb=0.00 Fe=1.4 | | | | ABS=0.00 | ABS=0.0 | ABS=0.0 | A8S=0.0 | ABS=0.0 | ABS=0.03
Cu =0.00
Zn =0.01 | | | | Silica
(SiO ₂) | | 16 | 19 | | 20 | | 19 | 18 | 18 | 18 | 17 | 15 | 17 | 16 | 15 | | | million | Boron
(B) | 207) | 0.23 | 0.30 | 0.38 | 0.37 | 0.41 | 0.40 | 0.46 | 0.48 | 0.49 | 0.48 | 0.46 | 0.44 | 0.44 | 0.52 | | Pillion | per mi | Fluo-
ride
(F) | (STA. | 0.01 | 0.0 | | 0.03 | 0.01 | 0.03 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | | ports per million | | Ni-
trate
(NO ₃) | PLANT | 2.0 | 0.03 | | 3.5 | | 2.6 | 2.2 | 3.3 | 4.2 | 0.01 | 0.0 | 2.7 | 2.1 | 3.4 | | 8 | equivolents | Chlo-
ride
(CI) | PUMPING | 95 | 3.36 | 3.78 | 3.67 | 3.75 | 3.72 | 3.92 | 3.84 | 3.95 | 3.75 | 3.10 | 3,36 | 3.21 | 3.27 | | | - 1 | Sul -
fate
(SO ₄) | AT SOUTH BAY | 41 | 1.19 | | 67 | 68 | 1.42 | 1.71 | 1.85 | 1.85 | 1.85 | . 1.73 | 1.83 | 1.83 | 92 | | apant tenne | Silingilis | Bicar-
bonate
(HCO ₃) | | 115 | 125 | 134 | 133 | | 137 | 136 | 137 | 137 | 120 | 11.90 | 1111 | 112 | 11.90 | | dog losson | | Carban-
ota
(CO ₃) | FOREBAY | 0.00 | 0.00 | 0.00 | 0.00 | | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 00.00 | | M | | Potos- (X) | BETHANY | 3.1 | 3.5 | 3.6 | 3.6 | 3.6 | 5.0 | 3.5 | 3.3 | 3.5 | 3.2 | 3.0 | 3.0 | 3.4 | 3.0 | | | Ì | Sodium
(No) | | 64 | 3.52 | 96 | 3.87 | 92 | 96 | 98 | 98 | 104 | 99 | 3.57 | 3.83 | 3.48 | 3.65 | | | | Magne-
sium
(Mg) | | 1.18 | 17 | 20 | 18 | 18 | 20 | 17 | 20 | 20 | 20 | 1.46 | 20 | 1.45 | 1.53 | | | | Calcium
(Co) | | 1.40 | 33 | 35 | 38 | 38 | 35 | 2.10 | 2.00 | 39 | 32 | 32 | 33 | 35 | 35 | | | | Į. | | 7.9 | 7.9 | 8.0 | 7.8 | | 8.1 | 7.8 | 7.9 | 8.1 | 7.8 | 7.7 | 7.8 | 8.0 | 8.0 | | | Specific | (micramhos
of 25°C) | | 588 | 710 | 797 | 788 | 787 | 789 | 835 | 852 | 678 | 805 | 720 | 773 | 755 | 763 | | | | lved
gan
%Sot | | | | | | | | | | | | | | | | | | | 0 x y | | | | | | | | | | | | | | | | | | | Te ai | | | | | m | 2 | | 0 | 10 | 2 | - | .7 | | | | | | | Water Temp D
Elevation of
(feet) | | | 237.5 | 237.7 | 239.13 | 237.42 | 237.31 | 230.30 | 238.66 | 238.12 | 238.51 | 238.84 | | | 235.9 | | | | ond tims
sompled
P.S.T. | | 10-8-62 | 11-1-62
1550 | 11-19-62 | 12-9-62
1915 | 12-24-62 | 1-7-63 | 1-21-63 | 2-4-63 | 2-18-63
1350 | 3-1-63 | 3-18-63 | 4-1-63 | 4-15-63
1515 | 4-29-63
1835 | | | | | | | | | | | | | | | _ | | | | | a Field pH b Laboratory pH. c. Sun of coleum and magnesium in apm. d. Iran (Fe), aluminum (A1), assenic (A2), capper (Cu), Iead (Pb), manganese (Mn), 21nc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. e Derived from conductivity vs TDS
curves. f Determined by addition of analyzed constituents. g Gravimetric determination. Annual median and range, respectively. Calculated from amalyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health & reite. ³²⁵⁰⁵⁻D-H 6-61 200 sPO Mineral analyses made by United States Geological Survey, Quality of Water Broach (USCS); United States Department of the Interior, Burcara of Racformation (USCR), United States Geological Survey, Quality of Water Broach States (USCR), Angels Superment of Manager of Power (LADMP), City of Los Angels, Department of Public Result (MSCP), Clin Manager of States Communication (MSC), States Communication of Proper (LADMP), City of Los Angels, Speaker of States Communication (MSC), States Communication of Proper (LADMP), City of Los Angels, Speaker of States Communication (MSC), States Communication of Proper (LADMP), City of Los Angels, Speaker of States Communication (MSC), States Communication of Proper (LADMP), City of Los Angels, Speaker of States Communication (MSC), C | | Anolyzed | by i | | | | | | | | | | | | | | | |----------------------|-----------|--------------------------|---------------------|-------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------|----------------------|----------------------|----------------------|-----------------|------|--| | | Coliformh | OR COCOS ITY MPN/MI by I | | | | | | | | | | | | | | | | Ι, | Pid - bid | n ppm | | | | | | | | | | | | | | | | | 8880 | 300g | Tatai N.C. | | 70 | 47 | 23 | 19 | 23 | 23 | 18 | 21 | 0 | 31 | | | | | Hord | 0 80 | Tatal
ppm
mgd | | 168 | 126 | 71 | 99 | 75 | 83 | 84 | 91 | 149 | 136 | | | | | Cent | 95 | | | 51 | 52 | 47 | 777 | 775 | 87 | 577 | 717 | 37 | 67 | | | | 1000 | | Bolios
Bolios | E dd u | | 400 | 340 | 157 | 156 | 170 | 200 | 182 | 214 | 339 | 332 | | | | | | Other constituents | - 1 | | ABS=0.01
Cu =0.00
Zn =0.00 | A8S=0.01
Cu =0.00
Zn =0.00 | ABS=0.01
Cu =0.00
Zn =0.00 | ABS=0.00
Cu =0.00
Zn =0.00 | ABS=0.00
Cu =0.00
Zn =0.00 | Cu =0.00
Zn =0.00 | Cu =0.00
Zn =0.00 | Cu =0.00
Zn =0.00 | Cu =0.00
Zn =0.06 | Cu =0.02 | | | | | L | Silica | 2000 | | 14 | 15 | 15 | 13 | 14 | 14 | 2.4 | 17 | 13 | 19 | | | | c iii | | Borge | | | 0.49 | 0.39 | 0.19 | 0.17 | 0.14 | 0.14 | 0.14 | 0.14 | 0.1 | 0,23 | | | | millio
m | | Fluo- | (F) | A. 207) | 0.03 | 0.01 | 0.00 | 0.00 | 0.01 | 0.0 | 0.0 | 0.00 | 0.00 | 0.02 | | | | ports per million | | - Ni- | (NO 8) | BAY PUMPING PLANT (STA. | 0.00 | 0.0 | 0.00 | 0.01 | 0.6 | 0.02 | 0.00 | 1.1 | 0.01 | 0.02 | | | | | | Chla- | (c) | PING PL | 3,36 | 2.45 | 1.18 | 1.04 | 1.16 | 1.35 | 43 | 1.30 | 62 | 2.54 | | | | ē | | Sul - | |
BAY PUM | 90 | 1.42 | 0.60 | 25 | 0.56 | 30 | 0.56 | 26 | 17 | 42 | | | | stituent | | Bicar | | SOUTH | 120 | 96 | 0.95 | 57 | 1.03 | 73 | 39 | 1.41 | 303 | 2.10 | | | | Mineral constituents | | Carbon- | (co ₃) | BETHANY FOREBAY AT | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.70 | 0.00 | 0.00 | 0.00 | | | | 2 | | | (K) | LANY FOR | 3.0 | 0.06 | 0.04 | 0.05 | 0.05 | 0.05 | 2.0 | 0.04 | 17 | 3.2 | | | | | | Sadium | (0 4) | BET | 3.57 | 2.78 | 30 | 1.09 | 1,13 | 36 | 32 | 34 | 47 | 63 | | | | | | Mogne- | (Mg) | | 1.46 | 1.17 | 6.9 | 6.9 | 0.60 | 8.6 | 9.5 | 0.87 | 20 | 1.17 | | | | | | Calcium | (69) | | 38 | 1.35 | 0.85 | 0.75 | 0.90 | 0.95 | 0.90 | 0.95 | 1.35 | 31 | | | | | : | Ŧ | | | 7.9 | 8.0 | 7.4 | 7.7 | 7.4 | 7.9 | 9.4 | 7.1 | 6.3 | 7.7 | | | | | Spacific | (micromhos | | | 787 | 593 | 314 | 280 | 307 | 344 | 334 | 364 | 812 | 593 | | | | | 987 | 5 | %Sat | | | | | | | | | | | |
 | | | | | osygen | ppm %Sat | | | | | | | | | | | | | | | | Te mo | ii or | | | | | | | | | | | | | | | | | Makes | | (feet) | | 233,53 | 237.95 | 237.5 | 238.12 | 237.3 | 235.1 | 236.1 | 234.7 | 236.3 | 236,4 | | | | | Dote | sond time | P.S.T. | | 5-13-63 | 5-27-63
1230 | 6-10-63 | 6-24-63 | 7-8-63 | 7-23-63 | 8-5-63 | 8-19-63
1230 | 9-3-63
1715 | 9-30-63
1300 | | | o Field pH. b Laboratory pH. d Iron (Fe), aluminum (Ai), arsonic (As), capper (Cu), lead (Pb), manganese (Idn), zinc (Zn), and hexavalent chramium (Cr⁺⁶), reparted here as 0.00 except as shawn. Description Gravimetric determination. Determined by addition of analyzed constituents. ³²⁵⁰⁵⁻D-H 6-61 200 SPD h Amuol median and range, respectively, Calculated from analyses of duplicate monthly samples grade by California Department of Public Health, Division of Lobaronaries, or United Stores Public Health Service. I Mannel analysess made by United Stores Geological Stravey, Opality of West Beand Department of Recommission (USBR), United Stores Cabine Stores Capine Stores (USPHS), San Bernadian Cannel Flood Cannel District (SECTCD), Manapolitien West District (USPHS), Los Angels Department of West (LADPP), City of Los Angels, Department of Public Health (LADPP), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), City of Los Angels, Department of Public Health (LADPP), Terming Cannel Stores (USPHS), Cannel Capinel Stores (USPHS), Cap ### TABLE D-2 # ANALYSES OF SURFACE WATER SOUTH BAY AQUEDUCT | _ | | | | | | | | | | | | | | | | | | _ | |-------------------|--------------|--|-----|-----------------|-----------|-----------|------------------|-----------------|---|-----------|-----------------|-----------------|-----------|-----------|----------------|-----------------|----------------------------------|---| | | | Analyzed
by 1 | | | OWR | | | | | | | | | | | | | | | | | bid - Coliform
ify MPN/mi | - pid - | N C O S | | | 24 | 30 | 36 | 41 | | 47 | 67 | 51 | 575 | 20 | 79 | 09 | 65 | | | | | | Egg | | 109 | 121 | 128 | 141 | 147 | 149 | 156 | 144 | 145 | 150 | 156 | 147 | 168 | | | | å | Fod - | 1 | | 8 7 | 20 | 51 | 52 | 53 | 52 | 54 | 26 | 55 | 52 | 53 | 54 | 52 | | | | Total | Solids
Solids
in pom | | | 288 | 308 | 346 | 387 | 607 | 423 | 438 | 403 | 337 | 358 | 442 | 429 | 458 | | | | | Other constituents | | | | | Turb. = 2.0 | | A1=0,10 Pb=0.00
As=0.01 Mn=0.00
Cu=0.00 Zn=0.00
Se=0.001 | | | A8S=0.00 | ABS=0.0 | ABS=0.0 | ABS=0,0 | A8S=0.0 | A85=0.02
Cu =0.00
Zn =0.02 | | | | | Silica
(SiO ₂) | + | | 16 | 14 | | 디 | 4 4 0 | 9] | 16 | 16 | 17 | 18 | 15 | 8,8 | 18 | _ | | | ig | Boron (B) | | | 0.18 | 0,23 | 0.27 | 0.27 | 0.30 | 0.27 | 0.30 | 0.29 | 0.28 | 0.32 | 0.39 | 0.34 | 0.52 | | | Toj II | per millian | Flua-
ride
(F) | | A. 214) | 0.2 | 0.2 | Ī | 0.2 | 0.01 | 0.0 | 0.2 | 0.3 | 0.1 | 0.00 | 0.2 | 0.1 | 0.0 | | | oorts oer million | equivalents | trate
(NO.) | -+- | RESERVOIR (SIA. | 0.00 | 0.0 | | 0.9 | | 0.9 | 0.00 | 0.03 | 0.00 | 0.02 | 0.02 | 0.4 | 0.0 | | | ē | equivo | Chio-
ride
(CI) | | | 1.92 | 80 | 2.57 | 101 | 3.21 | 3.21 | 3.47 | 3.38 | 3.41 | 3,30 | 3.07 | 104 | 3.30 | | | | Ē | Sul -
fore
(SO _a) | - 1 | PATTERSON | 31 | 38 | 1 | 1,00 | 1.16 | 56 | 61 | 58 | 59 | 1.25 | 1.71 | 1.73 | 1.87 | | | | constituents | Bicar -
bonate
(HCO ₃) | | AT | 104 | 1111 | 112 | 122 | | 1.75 | 114 | 113 | 123 | 11.90 | 112 | 94 | 126 | | | | Mineral can | Carban-
ate
(CO,) | , | LIVERMORE CANAL | 00.00 | 0.00 | 0.00 | 00.00 | | 9 | 8 | 0.00 | 0.00 | 0.10 | 0.00 | 0,20 | 0.00 | | | | M | Potas-
stuff
(K) | | LIVER | 2.6 | 0.07 | 0.07 | 3.2 | 3.4 | 3.4 | 3.7 | 3.6 | 3.5 | 3.5 | 3.0 | 3.2 | 9.7 | | | | | Sodium
(No) | | | 47 | 57 | 2.78 | 3.18 | 3,39 | 3.35 | 3.70 | 3.74 | 3,61 | 3.35 | 3,61 | 3.57 | 3.70 | | | | | Magne-
Sium
(Mg) | | | 11 0.88 | 1.07 | 1.26 | 1.17 | 15,124 | 1.28 | 15 | 17 | 1,30 | 17 | 17 | 1.34 | 17 | | | | | Calcium
(Ca) | | | 26 | 27 | 26 | 33 | 34 | 34 | 38 | 29 | 32 | 32 | 34 | 32 | 39 | | | | | H H | | | 7.9 | 8.2 | 8.0 | 8.2 | | 8.8 | 9.0 | 8.2 | 8.2 | 8,4 | 7.9 | 8.5 | 7.9 | | | | Specific | (micramhos
at 25°C) | | | 406 | 523 | 567 | 642 | 069 | 674 | 744 | 688 | 709 | 709 | 716 | 708 | 772 | | | | Specific | Location
of
Collection | | | Reservoir Canal | Canel | Canal | | | | | Temp
n in oF | Elevation in of (feet) | | | 707.4 | 708.3 | 706.95 | 703,4 | 707.9 | | 702.7 | 693.85 | 692.1 | 0.689 | | | 705.4 | | | | | ond time
sampled | | | 10-9-62 | 11-1-62 | 11-20-62
1059 | 12-9-62
1800 | 12-24-62
1520 | 1-7-63 | 1-21-63
1420 | 2-18-63
1525 | 3-1-63 | 3-18-63 | 4-1-63
1245 | 4-15-63
1620 | 4-29-63
1545 | | a Field pH Derived from canductivity vs TDS curves 32505-2-H 6-61 200 JPD b Loborotory pH. c. Dum of colcum and magnessium in agm. d Iran (Fe), aluminum (A1), arsenic (A3), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexaralent chromium (C1 ¹⁶), reparted here as 0 0 except as shown. c Sum of colesium and magnessum in epm. Detamined by addition of onalyzed constituents. Gravimetric determination. | _ | | | | | | | | | | | | |
 | |---|--|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------|----------------------|----------------------|--------|---------|------| | | Anolyzed
by i | | DWR | | | | | | | | | | | | | bid - Coliform
ity
In
ppm MPN/mi | | | | | | | | | | | | | | Į. | - piq
- th
uppm
uppm | | | | | | | | | | | | | | | N C O S | | 99 | 69 | 28 | 23 | 54 | 22 | 18 | 21 | | | | | | | | 166 | 167 | 87 | 75 | 77 | - 85 | 97 | 6 | 100 | 138 |
 | | | - Bog - P | | 53 | 54 | 45 | 43 | 42 | 7.7 | 777 | 777 | | |
 | | Toto | Bolved
Bolved
in ppm | | 434 | 697 | 193 | 173 | 175 | 201 | 188 | 212 | 220 | 348 | | | | Other constituents | | A8S=0.01
Cu =0.00
Zn =0.00 | ABS=0.02
Cu =0.00
Zn =0.00 | Cu =0.00
Zn =0.00
A83=0.00 | ABS=0.00
Cu =0.00
Zn =0.00 | ABS=0.01
Cu =0.00
Zn =0.00 | Cu =0.00
Zn =0.00 | Cu =0.00
Zn =0.00 | Cu =0.01
Zn =0.00 | | | | | | Sinca
(SiO ₂) | | 15 A | 18
C
Z | 15 Z | 13
C
Z | 11 Z Z | 17 | 9.0 | 15 | | |
 | | lon | Boron
(B) | 214) | 0.46 | 0.54 | 0.22 | 0.17 | 0.19 | 0,13 | 0.15 | 0.18 | | | | | million
per million | Flug-
ride
(F) | (STA. 2 | 0.3 | 0.2 | 0.00 | 0.2 | 0.0 | 0.00 | 0.00 | 0.0 | | | | | parts per million
equivalents per mill | rrate
(NO ₃) | ERVOIR | 0.00 | 0.03 | 0.0 | 0.0 | 0.01 | 0.0 | 0.00 | 0.01 | | | | | painte | Chia-
ride
(CI) | SON RES | 3.36 | 3.44 | 1.35 | 1.13 | 1.16 | 1,35 | 43 | 50 | 53 | 2.65 | | | = | Sul -
fats
(SO ₄) | PATTER | 1.83 | 1.87 | 0.71 | 0.58 | 26 | 30 | 27 | 27 | 28 | 6.08 | | | stituents | Bicar-
bonots
(HCO ₃) | ANAL AT | 2.00 | 1.97 | 1.18 | 1.05 | 1.06 | 1.26 | 1.31 | 1.44 | | | | | Mineral constituents | Potas- Corbon-
sium ate
(K) (CO ₃) | LIVERMORE CANAL AT PATTERSON RESERVOIR | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | | | | ž | Potas-
sium
(K) | LIV | 3 4 | 3.2 | 0.05 | 0.05 | 0.05 | 1.9 | 2.0 | 0.05 | | | | | | Sodium
(No) | | 3.83 | 93 | 34 | 1.17 | 26 | 36 | 31 | 35 | | | | | | Magne-
Sium
(Mg) | | 1.42 | 1.54 | 7.8 | 0.60 | 0.59 | 0.70 | 0.73 | 9.8 | 2.00c | 2.760 | | | | Calcium
(Ca) | | 38 | 36 | 1.10 | 0.90 | 19 | 20 | 0.95 | 21 1.05 | | | | | _ | Hd 33 | | 8.0 | 7.8 | 7.4 | 7.5 | 7.9 | 8.3 | 9.4 | 7.7 | | | | | 2000 | onductan
micrombos
at 25° (| | 830 | 795 | 359 | 310 | 318 | 350 | 337 | 368 | 389 | 290 | | | 0 | 0 | | Cenal | Canal | Canal | Canal | Canal | Canel | Canal | Canal | Canol | Canal | | | | Temp
n of | | | | | | | | | | | | | | | Elevation in of
(feet) | | 707.8 | 7.07.7 | 707.4 | 708.6 | 708.1 | 702.5 | 709.1 | 709.2 | | 706.0 | | | | and time sampled | | 5-13-63 | 5-27-63
1350 | 6-10-63 | 6-24-63 | 7-8-63 | 7-22-63 | 8-5-63
1530 | 8-19-63
1345 | 9-3-63 | 9-30-63 | | | | | | | | | | | | | | | | | Laboratory pH Field pH Determined by addition of analyzed constituents Gravimetric determination. OUT 002 TO-9 H-9-5/528 Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division at Laboratories, or United States Debits Health Service. Mineral analyses made by United States Geological Servey, Doubly of Wages Branch, United States Despite Median (MDS), United States Department of Median County, Eland County, Los Angeles Department of Males and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Median County, Los Angeles, Department of Public Median County, County County, Los Angeles, Department of Public Median County, C TABLE D-3 SUMMARY OF COLIFORM ANALYSES | Station | Station | Colif | orm MPN/ | m1 | |--|---------|---------|----------|---------| | | Number | Maximum | Median | Minimum | | | | | | | | North Coastal Region (No. 1) | | | | | | Gualala River, South Fork, near Annapolis | 9a | 620 | 18.5 | 0.62 | | Navarro River near Navarro | 8ъ | 230 | 4.3 | 0.23 | | Noyo River near Fort Bragg | 10c | 230 | 13 | 0.23 | | Russian River, East Fork, at Potter
Valley Powerhouse | 10a | 620 | 6.2 | 0.23 | | Russian River at Guerneville | 10 | 7,000+ | 10.6 | 2.1 | | Russian River near Healdsburg | 9 | 7,000+ | 14.6 | 0.23 | | Russian River near Hopland | 8a | 2,400 | 57.5 | 2.3 | | | | | | | | San Francisco Bay Region (No. 2) | | 2 4 2 2 | | | | Alameda Creek near Niles | 73 | 2,400 | 62 | 1.3 | | Coyote Creek near Madrone | 82 | 620 | 6.2 | 0.045 | | Los Gatos Creek near Los Gatos | 74 | 620 | 6.2 | 0.21 | | Napa River near St. Helena | 72 | 7,000+ | 230 | 6.2 | | Central Coastal Region (No. 3) | | | | | | Carmel River at Robles del Rio | 83 | 62 | 12.1 | 0.62 | | Nacimiento River near San Miguel | 43ъ | 230 | 23 | 0.21 | | Pajaro River near Chittenden | 77 | 7,000+ | 62 | 2.3 | | Salinas River near Bradley | 43c | 2,400 | 6.2 | 0.23 | | Salinas River at Paso Robles | 43a | 2,400 | 126 | 5 | | Salinas River near Spreckels | 43 | 7,000+ | 230 | 2.3 | | San Antonio River near Pleyto | 43d | 62 | 6.2 | 0.62 | | San Benito River near Bear Valley Fire
Station | 77a | 620 | 13.8 | 0.23 | | San Lorenzo River at Big Trees near Felton | 75 | 2,400 | 23 | 2.3 | | Soquel Creek at Soquel | 76 | 2,400 | 39 | 0.62 | | Uvas Creek near Morgan Hill | 96 | 620 | 6.2 | 0.62 | TABLE D-4 SPECTROGRAPHIC ANALYSES OF SURFACE WATER | | | | | | | | | | Cans | lituents | in ports | Canstituents in ports per billion | 2 | | | | | | Г | | |---|--------|---------|--------|--------|-----------|---------|--------|---------|--------|----------|------------|-----------------------------------|--------------|---------|--------|-------|--------|-------------------|----------|--| | Stotion | Sto | 000 | Alumi- | Beryl. | Bismuth C | Codmium | Cobolt | Chro. C | Copper | lron Go | Gollium Ge | 1 | <u> </u> | Molyb. | Nickel | Lead | molugi | Titanium Vanadium | Zinc | | | | o
Z | | (Ai) | (Be) | (18) | (P)) | (00) | (Cr) | (00) | (Fe) (| (09) | (Ge) | nese
(Mn) | (Ma) | (N:) | (Pb) | (13) | (^) | (zu) | | | NORTH COASTAL REGION (NO. 1) | | | | | | | | | | - | | | | | | | | | | | | RUSSIAN RIVER, RAST FORK AT
POTTER VALLEY POWERHOUSE | 10a | 5-7-63 | 247 | < 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 3.3 | 2 | < 6.7 | < 1.3 | 3.3 | < 1.3 | 2.6 | < 3.3 | < 1.3 | < 1.3 | < 6.7 | | | RUSSIAN RIVER, EAST FORK AT
POTTER VALLEY FOWERHOUSE | 10a | 9-11-63 | 6.3 | < 1.3 | < 0.67 | > 3.3 | < 3.3 | × 3.3 | < 3.3 | 6.9 | × 13 | < 0.67 | < 3.3 | ≥ 0.67 | ≥ 0.67 | < 3.3 | < 1.3 | < 0.67 | c 13 | | | RUSSIAN RIVER AT GUERNEVILLE | 10 | 5-6-63 | 73 | < 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 3.3 | 01 | < 6.7 | < 1.3 | 3.3 | < 1.3 | 3.0 | < 3.3 | < 1.3 | < 1.3 | < 6.7 | | | EUSSIAN RIVER AT GUERNEVILLE | 10 | 9-13-63 | 8.0 | < 1.3 | < 0.67 | < 3.3 | < 3.3 | < 3.3 | < 3.3 | 4.1 | × 13 | < 0.67 | V* | \$ 0.67 | ≥ 0.67 | < 3.3 | < 1.3 | 5.3 | < 13 | | | SAN FRANCISCO BAY REGION (NO. 2) | ALAMEDA CREEK NEAR NILES | 73 | 5-14-63 | 41 | < 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 3.3 | 5.2 | < 6.7 | < 1.3 | × 3.3 | ≤ 1.3 | 3.5 | < 3.3 | < 1.3 | 8.7 | < 6.7 | | | ALAMEDA CREEK NEAR NILES | 73 | 9-4-63 | 26 | < 1.3 | < 0.67 | < 3.3 | < 3.3 | < 3.3 | < 3,3 | 26 | < 13 | < 0.67 | × 3.3 | \$ 0.67 | ≥ 0.67 | < 3.3 | < 1.3 | 21 | د
د د | | | ARROYO DEL VALLE NEAR LIVERMORE | 7.1 | 5-14-63 | 23 | < 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 3.3 | 4.3 | < 6.7 | < 1.3 | < 3.3 | \$ 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 6.7 | | | ARROYO DEL VALLE NEAR LIVERHORE | 11 | 9-3-63 | 9.3 | < 1.3 | < 0.67 | < 3.3 | < 3.3 | < 3.3 | < 3.3 | 9.3 | < 13 | < 0.67 | < 3.3 | < 0.67 | ≥ 0.67 | < 3.3 | < 1.3 | < 0.67 | < 13 | | | COYOTE CREEK NEAR MADRONE | 82 | 5-14-63 | 193 | < 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 3.3 | 31 | < 6.7 | < 1.3 | < 3.3 | < 1.3 | 4.1 | < 3.3 | < 8.0 | < 1.3 | < 6.7 | | | COYOTE CREEK NEAR MADRONE | 82 | 9-2-63 | 7.3 | < 1.3 | < 0.67 | < 3.3 | < 3.3 | < 3.3 | < 3.3 | 17 | < 13 | < 0.67 | < 3.3 | ≥ 0.67 | 2.9 | < 3.3 | 0.9 | < 0.67 | < 13 | | | NAPA RIVER NEAR ST. HELENA | 72 | 5-8-63 | 80 | < 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 3.3 | 17 | < 6.7 | < 1.3 | 17 | < 1.3 | 3.3 | < 3.3 | < 1.3 | 5.9 | < 6.7 | | | CENTRAL COASTAL REGION (NO. 3) | PAJARO RIVER AT CHITTENDEN | 77 | 5-15-63 | 25 | < 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 3.3 | < 3.3 | < 6.7 | < 1.3 | < 3.3 | < 1.3 | 7.9 | < 3.3 | < 1.3 | 6.7 | < 6.7 | | | PAJARO RIVER AT CHITTENDEN | 77 | 9-2-63 | 8.0 | < 1.3 | < 0.67 | < 3.3 | < 3.3 | < 3.3 | < 3.3 | 9.3 | × 13 | < 0.67 | < 3.3 | ≥ 0.67 | 4.5 | < 3.3 | < 1 3 | :: | < 13 | | | SALINAS RIVER NEAR SPRECKELS | 43 | 5-16-63 | 45 | < 1.3 | < 1.3 | < 3.3 | < 1.3 | < 1.3 | < 3.3 | 5.7 | < 6.7 | <, 1.3 ← | < 3.3 | \$ 1.3 | < 1.3 | < 1.3 | < 1.3 | = | < 6.7 | | | SALINAS RIVER NEAR BRADLEY | 430 | 9-4-63 | 8.0 | < 1.3 | < 0.67 | < 3.3 | < 3.3 | < 3.3 | < 3.3 | | ٠
تا ^ | < 0.67 | 8.0 | 19 | 7.3 | < 3.3 | < 1.3 | 6.3 | ر
ا | Ī | | | | | | | | | | | | | | | TABLE D-5 RADICASSAYS OF SURFACE WATER | ((| 1: | a | 1 | Pico curies per liter | es pe | er liter | 2003 | |--|----------------|---------|-----------|-----------------------|-------|------------|---------------| | REGION (NO. 1) | | | | | | | | | BIG RIVER NEAR MOUTH | 8 c | :5/1/63 | 0 + 0.2 | 0 +1 | 0.2 | 4.2 ± 4.7 | 0.8 ± 4.7 | | BIG RIVER NEAR MOUTH | 8c | 9/13/63 | 0.1 ± 0.4 | 0 +1 | 0.3 | 2.2 ± 6.2 | 0 ± 6.1 | | GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS | 9a | 2/6/63 | 0 + 0.2 | 0 +1 | 0.2 | 2.2 ± 4.2 | 0 + 4.2 | | GUALALA RIVER, SOUTH FORK NEAR ANNAPOLIS | 9a | 9/13/63 | 4.0 + 4.0 | 0 +1 | 0.3 | 0 ± 6.1 | 0 + 6.1 | | NAVARRO RIVER NEAR NAVARRO | 8 _b | 5/1/63 | 0 + 0.2 | 0 +1 | 0.2 | 7.9 ± 4.4 | 2.2 ± 4.3 | | NAVARRO RIVER NEAR NAVARRO | 8 _b | 9/13/63 | 0.3 ± 0.4 | 0.5 + 0. | 4.0 | 4.0 ± 6.2 | 5.0 ± 6.2 | | NOYO RIVER
NEAR FORT BRAGG | 10c | 5/1/63 | 0 + 0.1 | 0 +1 | 0.1 | 6.4 + 4.3 | 2.6 ± 4.3 | | NOYO RIVER NEAR FORT BRAGG | 10c | 9/13/63 | 0.2 ± 0.3 | 0.1 + 0. | 0.2 | 2.9 ± 6.2 | 0.4 ± 6.1 | | RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE | 10a | .5/7/63 | 0.2 ± 0.2 | 0.3 + 0. | 0.2 | 10.4 + 4.4 | 19.8 ± 4.6 | | RUSSIAN RIVER, EAST FORK AT POTTER VALLEY POWERHOUSE | 10a | 9/11/63 | 4.0+ 0 | 0 +1 | 7.0 | 5.1 + 6.2 | 5.1 ± 6.2 | | RUSSIAN RIVER AT GUERNEVILLE | 10 | 2/6/63 | 0.1 ± 0.2 | 0.1 + 0 | 0.2 | 1.1 ± 4.3 | 4.4 + 4.9 | | RUSSIAN RIVER AT GUERNEVILLE | 10 | 9/13/63 | 0.1 ± 0.3 | 0.3 ± 0. | 7. | 0.8 ± 6.2 | 0 + 6.1 | | RUSSIAN RIVER NEAR HEALDSBURG | 6 | 5/6/63 | 0 + 0.2 | 0 +1 | 0.2 | 6.6 + 4.2 | 7.8 ± 4.3 | | RUSSIAN RIVER NEAR HEALDSBURG | 6 | 9/11/63 | 0.1 ± 0.3 | 0 +1 0 | 0.3 | 4.1 + 6.2 | 0 ± 6.1 | | RUSSIAN RIVER NEAR HOPLAND | &
¤ | 5/8/63 | 0.1 ± 0.2 | 0 + 0.2 | 2. | 8.4 + 4.8 | 5.8 + 4.8 | | v0 · · · | j | a 1 | 5 | हम्बद्धाः
स्थापाः
स्थापाः | Pico cunies per liter | er liter
D ssolved Betu | Solid Beru | |----------------------------------|---------|---------|-----|---------------------------------|-----------------------|----------------------------|---------------| | REGION (NO. 1) | | | | | | | | | RUSSIAN RIVER NEAR HOPLAND | 88
a | 9/11/63 | 0 | + 0.3 | 0.3 ± 0.4 | 0 + 6.2 | 3.3 ± 6.2 | | REGION (NO. 2) | | | | | | | | | ALAMEDA CREEK NEAR NILES | 73 | 5/14/63 | 0 | + 0.3 | 0 + 0.3 | 6.4 + 6.2 | 4.3 + 6.2 | | ALAMEDA CREEK NEAR NILES | 73 | 6/4/63 | 0.1 | + 0.4 | 0.5 ± 0.5 | 7.0 ± 6.1 | 8.0 + 6.1 | | ARROYO DEL VALLE NEAR LIVERMORE | 71 | 5/14/63 | 0.2 | + 0.2 | 0.5 ± 0.3 | 1.0 + 6.2 | 13.4 ± 6.4 | | ARROYO DEL VALLE NEAR LIVERMORE | 71 | 9/3/63 | 0 | + 0.3 | 0 + 0.3 | 11.2 ± 6.2 | 4.7 ± 6.1 | | COYOTE CREEK NEAR MADRONE | 82 | 5/14/63 | 0.2 | + 0.3 | 0.4 ± 0.3 | 4.7 ± 6.4 | 8.8 + 6.5 | | COYOTE CREEK NEAR MADRONE | 82 | 6/2/63 | 0.1 | + 0.4 | 7.0 + 0 | 0 + 6.3 | 0 ± 6.2 | | LOS GATOS CREEK NEAR LOS GATOS | 74 | 5/16/63 | 0 | + 0.4 | 5.0 + 0.4 | 0.9 + 6.4 | 4.9 + 0 | | LOS GATOS CREEK NEAR LOS GATOS | 74 | 6)/2/63 | 0.1 | + 0.4 | 0 + 0.3 | 0 + 6.3 | 0 + 6.2 | | NAPA RIVER NEAR ST. HELENA | 72 | 5/8/63 | 0 | + 0.1 | 0 + 0.1 | 7.3 ± 4.5 | 4.8 ± 4.2 | | REGION (NO. 3) | | | | | | | | | CARMEL RIVER AT ROBLES DEL RIO | 83 | 2/16/63 | 0.3 | + 0.4 | 0 + 0.3 | 6.9 + 6.3 | 1.9 ± 6.2 | | NACIMIENTO RIVER NEAR SAN MIGUEL | 43b | 69/4/63 | 0.4 | + 0.4 | 0.1 ± 0.4 | 0 + 6.1 | 0 ± 6.1 | | PAJARO RIVER NEAR CHITTENDEN | 77 | 5/15/63 | 0.3 | + 0.2 | 0.1 ± 0.2 | 4.0 + 6.3 | 0.4 ± 6.2 | | PAJARO RIVER NEAR CHITTENDEN | 77 | 9/5/63 | 0 | + 0.4 | 0 ± 0.3 | 8.4 ± 6.2 | 0.6 ± 6.5 | TABLE D-5 RADIOASSAYS OF SURFACE WATER | | 0 | | | Pico curies per liter | er liter | | |---|-----|---------|--------------------|-----------------------|----------------|---------------| | Station | 20 | Date | Dissolved Alpha | Sond Alpho | D sscived Beta | Solid Betu | | REGION (NO. 3) | | | | | | | | SALINAS RIVER NEAR BRADLEY | 43c | 5/15/63 | 0 + 0.2 | 0.7 ± 0.4 | 6.8 ± 6.2 | 16.3 ± 6.3 | | SALINAS RIVER NEAR BRADLEY | 43c | 6/4/63 | 9.0 + 0 | 0 + 0.5 | 0 ± 6.2 | 1.9 ± 6.2 | | SALINAS RIVER AT PASO ROBLES | 43a | 5/15/63 | 0.3 ± 0.5 | 0 + 0.3 | 1.5 ± 6.3 | 0 + 6.3 | | SALINAS RIVER NEAR SPRECKELS | 43 | 5/16/63 | 4.0 + 9.0 | 0.2 ± 0.3 | 13.1 ± 6.3 | 7.8 ± 6.2 | | SALINAS RIVER NEAR SPRECKELS | 43 | 9/5/63 | 4·0 - 0 | 4.0.4 | 29.7 ± 6.5 | 0.5 ± 6.0 | | SAN ANTONIO RIVER NEAR PLEYTO | 43d | 5/15/63 | 0.5 + 0.5 | 4.0.4 | 0 + 6.1 | 0.1 ± 6.1 | | SAN BENITO RIVER NEAR
BEAR VALLEY FIRE STATION | 77a | 5/15/63 | 0.1 ± 0.3 | 0.1 ± 0.3 | 4.8 + 6.2 | 3.6 ± 6.2 | | SAN BENITO RIVER NEAR
BEAR VALLEY FIRE STATION | 77a | 9/4/63 | 0.5 + 0.6 | 0.4 | 4.8 + 6.2 | 0 + 6.1 | | SAN LORENZO RIVER AT BIG TREES
NEAR FELTON | 75 | 5/16/63 | 0 + 0.4 | 0 + 0.4 | 0 + 6.3 | 0 + 6.3 | | SAN LORENZO RIVER AT BIG TREES
NEAR FELTON | 75 | 9/5/63 | 0.3 + 0.4 | 0 + 0.4 | 5.8 + 6.2 | 2.4 + 6.1 | | SOQUEL CREEK AT SOQUEL | 92 | 5/16/63 | 0.1 ± 0.3 | 0 + 0.3 | 0 + 6.2 | 0 ± 6.1 | | SOQUEL CREEK AT SOQUEL | 92 | 9/5/63 | 4.0 ± 0 | 4.0.4 | 5.9 ± 6.2 | 6.9 ± 6.2 | | UVAS CREEK NEAR MORGAN HILL | 96 | 5/14/63 | 7.0 + 0 | 4.0.4 | 8.5 ± 6.2 | 0.2 ± 6.1 | | UVAS CREEK NEAR MORGAN HILL | 96 | 9/5/63 | 0 + 0.3 | 0 + 0.3 | 0 + 6.1 | 0.9 + 0 | | | | | | | | | TABLE D-6 ### DESCRIPTION OF SALINITY OBSERVATION STATIONS 1963 | STATION | Miles
from
Galder.
Gate | Tir
Inte
(t | rval | LOCATION | |---------------------------------|----------------------------------|-------------------|------|--| | | (0) | Hours | Min | | | Sobraute Beach - San Pablo Bay | 20.5 | 2 | 50 | South shore of San Pablo Bay from wherf approximately 1.5 miles upstream from Point Pinole. | | Crockett - San Pablo Bsy | 27.7 | 3 | 30 | West end of Carquinez Strait, south shore, 0.2 mile east of Carquinez Bridge on wharf of C and H Sugar Refinery Corporation. | | Benicia - Csrquinez Strait | 32.5 | 3 | 50 | East end of Carquinez Strait, north shore, 1.1 miles west of Southern Pscific
Company railroad bridge at Benicia Araenal. | | Martinez - Carquinez Strait | 33.1 | 3 | 50 | Sampled from Shell 011 Company dock, about 0.6 mile downstream from Southern
Pacific Company railroad bridge. | | West Suisua - Suisun Bay | 37.0 | 4 | 10 | West end of Suisun Bay, north shore, 2.5 miles northeast of Southern Pacific railroad bridge at service pier of U. S. Maritime Commission, Reserve Fleet mooring area. | | Innisfail Perry - Suiaun Bay | 47.3 | 4 | 50 | Montezuma Slough, sbout one mile east of junction with Cutoff Slough near
north end of Grizzly leland. | | Port Chicago - Suisun Bay | 41.0 | 4 | 20 | South Shore of Suisun Bay st U. S. Naval ammunition loading wharf below
Fort Chicago. | | Spoonbill Creek + Suisun Bay | 48.9 | 5 | 05 | At Sacramento Northern Railroad crossing. | | Pitteburg - Suisun Bay | 48.0 | 5 | 00 | East end of Suisun Bay, south shore, at Pittsburg Yscht Harbor. | | Collinaville - Sacramento River | 50.8 | 5 | 25 | Sacramento River, north bank at junction with San Joaquin River. | ### OBSERVED SALINITY AT BAY AND **DELTA STATIONS** MAXIMUM In parts of chloride per million ports of water* | STATION | | | | | ١ | WATER | YEAR | ? | | | | | |---|-------|-------|-------|--------|-------|-------|--------|-------|-------|-------|-------|-------| | STATION | 1931 | 1938 | 1939 | 1944 с | 1952 | 1955 | 1956 d | 1958 | 1959 | 1961 | 1962 | 1963 | | Socramento — San Jooquin System
Unimpoired Runoff in
Percent of Average (e) | 34 | 188 | 49 | 62 | 168 | 63 | 175 | 166 | 66 | 61 | | | | Sobrante Beach*t | | | | | 14200 | 19000 | 16200 | 13800 | 17200 | 15000 | 15600 | 13300 | | Crockett | | | | | 13200 | 16600 | 15300 | 11900 | 15000 | 19900 | 13900 | 13100 | | Senicis** | | | | 13900 | 10400 | 15100 | 12300 | 12100 | 19200 | 14000 | 12300 | 9780 | | Martinez | 16900 | 11600 | 16400 | | 8900 | 11900 | 11900 | 7150 | 10200 | 11600 | 12700 | 11500 | | West Suisun** | | | | | 7900 | 12600 | 11200 | 7520 | 13200 | 13200 | 11100 | 8280 | | Innisfeil Ferry** | 14000 | 3300 | 13600 | 7900 | 4200 | 5780 | 5200 | 3040 | 9640 | 13900 | 5690 | 2890 | | Port Chicago | | | | | 6900 | 12500 | 9750 | 5830 | 15640 | 11900 | 9370 | 9200 | | Spoonbill Creek | 13900 | 2560 | 11800 | 7300 | 2800 | 6400 | 4040 | 930 | 6270 | 5900 | 3540 | 2940 | | Pittsburg | | | | | 1200 | 7800 | 3440 | 1200 | 5110 | 3920 | 3980 | 1350 | | Collinsville | 12600 | 860 | 10400 | 4700 | 783 | 3880 | 2280 | 550 | 5430 | 4300 | 2430 | 1980 | ^{*} Ocean water contains approximately 18,200 parts per million. * Station discontinued July 1963. ^{*} Station discontinued July 1993. A Milesge measured to station along main channel. For stations off the main channel, the milesge shown is the same distance slong the main channel to s point whereon the time of the occurrence of the tidal phase is the same as that of the observation station. The interval between high tides at Golden Gate and time for teking samples at station. Releases of stored water from Shasta Lake commenced in 1944. Releases of atored water from Folsom Reservoir commenced in 1956. Average taken as mean annual unimpaired flow at foothill stations of major cributaries for 50-year period October 1907 through September 1957. ### SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts of water | STATION | | | | DAT | TE | | | | |---|--|---|--|--|--|--|--|---| | 37471014 | 10-2-62 | 10-6-62 | 10-10-62 | 10-14-62 | 10-18-62 | 10-22-62 | 10-26-62 | 10-30-62 | | Sobrante Beach
Crockett
Benicia
Martinez
West Suisun
Innisfail Ferry
Port Chicago
Spoombill Creek
Pittsburg
Collinsville | 13300
11400
7820
a9000
7820
2740
6460
1010
492
a426 | a12700
10700
9180
a8470
bd8280
a2890
6130
a1490
ad447 | a14200
e11500
e9780
e9970
7080
d7830
a1250
a642
a382 |
11900
9910
7920
a8870
2080
1560 | a4530
2640
944
1320
755
a1510
566
a212
a142
a68 | 4490
4530
3580
ae944
755
85
61 | 7520
4760
3970
2910
781
969
71
19
40 | 8680
6230
5190
a3970
2470
55
29
31 | | STATION | | | | DAT | TE. | | | | | STATION | 11-2-62 | 11-6-62 | 11-10-62 | 11-14-62 | 11-18-62 | 11-22-62 | 11-26-62 | 11-30-62 | | Sobrante Beach Crockett Benicia Martinea West Suisun Innisfail Ferry Port Chicago Spoonbill Creek Pittsburg Collinsville | 8600
4200
7500
1730
843
1470
a56 | 9020
a7190
4630
5820
2120
935
65
27
21 | 11000
9770
5960
a6980
135
bd61
27 | 10400
8540
7340
7900
4400
d3170
260
136
a26 | a9500
7130
4050
5710
1390
1080
138
53
26 | 13000
9220
8100
8960
5180
1040
4360
145
de63 | 11700
10000
4920
9250
6090
357
314
48 | 10200
7670
5200
8290
4000
1240
2640
280
81
a41 | | STATION | | | | DA. | TE. | | | | | STATION | 12-2-62 | 12-6-62 | 12-10-62 | 12-14-62 | 12-18-62 | 12-22-62 | 12-26-62 | 12-30-62 | | Sobrante Beach
Crockett
Benicia
Martinez
West Sussun
Innisfail Ferry
Port Chicago
Spoombill Creek
Pittsburg
Collinsville | 9440
7330
4510
6860
2320
171 | 9890
7040
5070
7830
71
34
20 | 10200
8580
5130
7710
d2630
2580
38 | 10200
7000
5460
5980
d3080
728
72
29
a10 | 8140
7130
4740
5070
2410
1010
1450
46
d27 | 8790
5900
6520
1130
2760
23 | 7360
5670
3280
6360
1390
30
24 | 8350
5590
3080
810
713 | | STATION | | | | DA* | TE. | | | | | STATION | 1-2-63 | 1-6-63 | 1-10-63 | 1-14-63 | 1-18-63 | 1-22-63 | 1-26-63 | 1-30-63 | | Sobrante Beach Crockett Bricia Bricia Bricia Bricia West Sussun Innisfall Ferry Port Chicago Sponobill Creek Pitsburg Collinsville | 8230
5780
2810
5130
1160
30
27 | 9060
d7480
5400
4470
2530
2530
32
2330
32
bd27
22 | 9120
7340
4470
7110
2060
62 | 8680
5340
2540
25670
2140
641
443
42
434
24 | 8250
7290
6070
7360
ae1840
4340
4340
47
20 | 10600
7580
9180
856
4240
376
d96
142 | 11000
6380
8020
4030
4070
431
52 | 11100
9250
566090
a8310
3790
1200
4070
444
146
106 | ^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide. a Taken after low high tide. b Taken on following day. c Taken two days later, e Taken on preceding day. d Taken over one hour off scheduled time. f Taken two days earlier. Taken two days earlier. ### SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts of water | STATION | | | | DA* | TE | | | | |--|---|---|--|--|--|--|---|--| | 5)411014 | 2+2-63 | 2-6-63 | 2-10-63 | 2-14-63 | 2-18-63 | 2-22-63 | 2-26-63 | | | Sobrante Beach Crockett Benicia Martinez West Swisun Innisfail Ferry Port Chicago Sponobill Creek Pitcsburg Collinsville | 4700
3550
1910
2850
496
1050
bd37
173
d16 | 1440
763
54
38
142
8
14 | 4690
2400
514
935
76
226
35
14 | 2200
1670
1060
59
19
19 | 3470
1970
250
386
255
20
bd25 | 4490
3970
2800
492
337
e371
31
32
18 | a6170
3370
810
a1870
178
a450
33
a29
ab32
a48 | | | STATION | | | | DA. | TE | | | | | | 3-2-63 | 3-6-63 | 3-10-63 | 3-14-63 | 3-18-63 | 3-22-63 | 3-26-63 | 3-30-63 | | Sobrante Beach Crockett Benicia Martinz Martin | 6360
43860
3030
1530
479
466
29 | 8060
6700
6890
1616
31
24 | 9090
5420
1690
32
30
27 | a11200
7280
3750
5630
2800
a476
2620
a34
abd32
25 | 7860
5730
3650
6540
ae1070
524
ae1140
46
40
23 | 12300
11200
6700
9610
510
529
284 | ad11400
10100
7090
a5730
2600
a752
2820
a246
a95
a30 | 5340
5920
3400
3980
849
8752
680
49
73
23 | | STATION | | | | DA: | TE | | | | | | 4-2-63 | 4-6-63 | 4-10-63 | 4-14-63 | 4-18-63 | 4+22-63 | 4-26-63 | 4-30-63 | | Sobrante Besch
Crockett
Benicia
Martinez
West Suisun
Innisfail Ferry
Port Chicago
Spoobbll Creek
Pittsburg
Colliosville | 5150
1460
291
583
78
607
24
bd21 | ad f8450
4180
2620
2720
121
de308
a19 | a3790
2230
158
a3570
46
a170
d20
a12
a16 | a2010
874
85
801
48
ad121 | a2670
1070
b655
a22
de29
b17
a7
a7
a6 | a2960
1140
316
36
a86
a12
abd23 | a2770
1260
de866
30
a109
d56
a10
a21 | 3610
807
277
221
ae70
ae61
8
16 | | STATION | | | | DA | TE | | | | | STATION | 5-2-63 | 5-6-63 | 5-10-63 | 5-14-63 | 5-18-63 | 5-22-63 | 5-26-63 | 5-30-63 | | Sobrante Beach Crockett Semicia Martinez West Sulsun Imnlsfail Ferry Port Chicago Spoonbill Creek Pitchurg Collinsville | 3270
2670
1090
1460
129
bd33
a15
a18
a8 | a6040
2820
a1390
317
a134
d24
a12 | a7330
3790
2180
a2030
163
40
a14
a15
a11 | a5150
2380
792
1140
287
148
16
15 | a8910
5540
3910
5150
2250
a121
bd1110
a14
a13
a17 | a7920
5150
4060
4460
624
a12
a13
a16 | a7520
3860
2570
3960
198
44
12
a15 | a8510
e3960
e2670
e2970
e366
a12 | ^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide. a Taken after low high tide. c Taken tow days later. b Taken tow days later. c Taken on preceding day. c Taken tow located above tidal action. d Taken tow days earlier. f Taken tow days earlier. ### SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million ports of water | STATION | | | | DAC | re | | | | |--|---|--|---|---|---|--|--|--| | | 6-2-63 | 6-6-63 | 6-10-63 | 6-14-63 | 6-18-63 | 6-22-63 | 6-26-63 | 6-30-63 | | Sobrance Beach Crockett Beolcia Martines West Suisun Innisfail Terry Fort Chicago Spoombill Creek Fitteburg Collinsville | a5440
4750
3370
1980
1240
bd495
a13 | a9110
5640
4750
5350
2480 | *10500
6730
5540
5940
4010
2600
d19
13 | e12100
e6830
e4750
e4950
e2970
e990
a30
a22
a15 | al1500
9600
7330
6140
abd109
3910
ad109
a58
a41 | e10300
8510
6930
6530
5440
a188
a64
a14 |
9920
7720
3370
6930
3860
96
ebd62
a25 | e11700
e5540
e7030
e3860
a166 | | STATION | | | | DA | TE | | | | | | 7-2-63 | 7-6-63 | 7-10-63 | 7-14-63 | 7-18-63 | 7-22-63 | 7-26-63 | 7-30-63 | | Crockett Hartinez Port Chicago Spombill Creek Pittsburg Collinaville | 9180
8700
a84
a56 | 8920
ad6450
5900
e409
cd426
a40 | 8820
88370
4470
a586
368 | e10400
aed6250
aed4490
e1100
abd353
a311 | 11700
9510
7330
d882
a445 | 12200
9530
7720
abd1720
d817
1090 | 10300
a8750
1270
a728 | e11300
e9780
e4850
e1920
aed1170
a794 | | STATION | | | | DA | TE | | | | | | 8-2-63 | 8-6-63 | 8-10-63 | 8-14-63 | 8-18-63 | 8-22-63 | 8-26-63 | 8-30-63 | | Crockett Hartleer Port Chicago Spoombill Creek Pitteburg Collinsville | 12900
10600
a5640
a2450
a1260 | 13100
a8000
7830
a2640 | 12600
11500
6670
a2350 | e12400
a8180
e8120
a2500
ad906 | 13200
11400
8780
abd1130
e1720 | 12400
9880
8530
2520
1980 | 10900
9710
7190
2250
a1350
a1030 | e12100
e11400
9200
a2940
a1370 | | STATION | | | | DA | TE | | | | | | 9-2-63 | 9-6-63 | 9-10-63 | 9-14-63 | 9-18-63 | 9-22-63 | 9-26-63 | 9-30-63 | | Crockett
Martinez
Port Chicego
Sponobill Creek
Pitteburg
Collinsville | 12600
a2350
a1030 | 12400
10900
5490
2300
a1400 | 11800
a8240
6860
1690
a515 | 11000
10800
6280
a578 | 10800
9310
5290
882
a333
a98 | 9800
a8820
3330
417 | 10700
3820
a368
e137
a44 | d9900
5490
a735
ebd167
a220 | ^{*} Samples taken at four-day intervals approximately one and one-half houre after high high tide. a Taken after low high tide. c Taken two days later. b Taken oo following day. d Taken over one hour off acheduled time. c Taken on preceding day. f Taken two days earlier. FIGURE D-1 # ELECTRICAL CONDUCTANCE DAILY MEAN ALAMEDA CREEK NEAR NILES (STA 73) 1963 ELECTRICAL CONDUCTANCE DAILY READINGS AT 1300 HOURS BETHANY FOREBAY AT SOUTH BAY PUMPING PLANT (STA 207) 1963 APPENDIX E GROUND WATER QUALITY ### GROUND WATER QUALITY Data presented in this appendix are measured values of selected quality characteristics of ground water samples collected in the Central Coastal Area during the period from July 1, 1962 through June 30, 1963. This appendix consists of a table showing results of analyses of ground water and a table showing results of radioassay of ground water. Wells and ground water basins are numbered in accordance with the system described in Appendix C. The data are presented in water pollution control board region, ground water basin, and well number order. ### Analyses of Ground Water Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and water temperature is reported in degrees Fahrenheit. Values for temperature are those measured in the field at the time of sampling. Laboratory analyses of ground water were performed by the Department of Water Resources, the United States Geological Survey, and Lein Laboratory, all in accordance with "Standard Methods for the Examination of Water and Waste Water", 11th Edition, or in accordance with U. S. Geological Survey Water Supply Paper 1454, "Methods for Collection and Analyses of Water Samples". The methods yield comparable results. Heavy metal concentrations were determined by "wet" analyses. Table E-1 presents analyses of ground water. Definitions of abbreviations used in this table are as follows: 1. TDS---Total dissolved solids by gravimetric determination at 180° . The superscript "a" indicates a value determined by summation of constituents. - 2. T.O.--Odor. - 3. ABS---Alkyl benzene sulfonate. - 4. DWR---Department of Water Resources. - 5. USGS--United States Geological Survey. - 6. LL----Lein Laboratories. ### Radioassay of Ground Water Radioassay of ground water is presented in Table E-2. Determinations were made by the California Disaster Office of suspended and dissolved alpha and beta activities in some samples and for gross activity in other samples. The term pico curie used in this report is also written micro-micro curies and is further defined as 10^{-12} curies. The most probable error is reported along with the measured value. Results should be considered qualitative and undue emphasis should not be given to quantitative values. | | Analyzed
by c | | | USGS | uses | USGS | 0.505 | uscs | OWR | USGS | USGS | USGS | USGS | USGS | | DWR | USGS | uscs | |-------------------------|---|-----------|--------------|--------------|--------------|-------------------------|---------------------------|-------------------------------|---|-------------------------|---------------------------|--|--------------|--------------------------|--------------|-------------------|--------------------------|--------------------------| | Hardness | N.C. | | | 9 | 34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 112 | | 6 | 0 | 0 | | | | 2 | | 259 | 127 | 157 | 125 | 112 | 136 | 134 | 117 | 139 | 116 | 81 | | 198 | 153 | 141 | | ď | Sod I | 1 | | 24 | 13 | 10 | 17 | 16 | 32 | 28 | 36 | 07 | 986 | 23 | | 77 | = | 21 | | Total | solved
solids
in ppm | | | 376 | 184 | 199 | 170 | 141 | 240 | 202 | 200 | 250 | 1270 | 149 | | 239 | 179 | 190 | | | Silico
(SiO ₂) Other constituents ^d | _ | | 25 | 18 | 28 | 91 | 9] | 135 | 28 | 26 | 59 | 21 | [3] | | 21 | 24 | 61 | | Lign | Baran
(B) | | | 6.0 | 0,3 | 1.0 | 0.2 | 0.5 | 0,15 | 0,1 | 0,1 | 0.2 | [8] | 0.3 | | 0,34 | 0,3 | 1.5 | | Ser mi | Flug-
ride | | | 0.0 | 0.7 | 0.4 | 0.6 | 0.2 | 0.0 | 0.9 | 0.05 | 0.02 | 0.06 | 0.04 | | 0.2 | 0.03 | 0.02 | | equivalents per millian | Ni-
trate
(NO ₁) | | | 0.9 | 36 | 4.1 | 0.02 | 0.02 | 0.5 | 0.02 | 0.9 | 0.02 | 2.1 | 0,27 | | 0.03 | 0.02 | 9.7 | | d | Chia- | | | 0.03 | 7.8 | 14 0.39 | 7.8 | 0.11 | 20 | 24 | 16 | 0,20 | 505 | 6.8 | | 7.6 | 5.0 | 7.4 | | č | Sul -
fate
(SO.) | | | 50 | 0.35 | 14 | 14 0.29 | 8.0 | 6.4 | 0.0 | 0.00 | 0.12 | 0.02 | 0.31 | | 200 | 0.23 | 12 0,25 | | Mineral constituents | Bicar-
banate | 1203/ | (1-15) | 356 | 113 | 181 | 158 | 147 | 3.26 | 3,03 | 3.28 | 246 | 3.82 | 1.38 | (1-16) | 3.79 | 3.08 | 3.02 | | •ral co | ate | 150 | | 0000 | 0.00 | 0.20 | 0.00 | 0.10 | 00.00 | 0.00 | 00.00 | 0.23 | 0.00 | 0.00 | | 00.00 | 0.00 | 0.00 | | 2 | Patas-Carbon-
sium ate | | OKEAH VALLEY | 0.04 | 0.7 | 0.2 | 0.05 | 0.03 | 1.0 | 0.0 | 0.3 | 0.9 | 0.7 | 0.3 | SANEL VALLEY | 0.03 | 0.5 | 0.9 | | | Sadium
(Na) | | NA NA | 37 | 8.9 | 14 | 12 0.52 | 9.8 | 30 | 24 | 30 | 42 | 338 | 0.48 | SAN | 13 | 8.4 | 0.74 | | | Magne - | | | 22 | 20 | 24 | 13 | 12 0.99 | 1,02 | 19 | 1,44 | 17 | 5.1 | 9.4 | | 21 | 24 2.01 | 200 | | | Calcium
(Ca) | | | 3.34 | 18 | 23 | 28 | 25 | 34 | 23 | 18 | 28 | 38 | 17 | | 44 | 21 | 23 | | | Ĭ. | 1 | | 8.0 | 7.6 | 4.8 | 7.9 | 8.4 | 8.3 | 8.1 | 7.2 | e. 30 | 7.7 | 7.2 | | | 8,1 | 8.2 | | Specific | ance
(micro-
mhas | at 25° C) | | 620 | 294 | 348 | 287 | 257 | 386 | 353 | 348 | 408 | 1930 | 212 | | 408 | 314 | 330 | | | Temp
in °F | | | | | 65 | 99 | | | 63 | 62 | 61 | 63 | 62 | | | 62 | 62 | | | Date | | | 9-29-62 | 79-01 | 10-2-62 | 10-62 | 10-2-62 | 10-62 | 10-62 | 10-62 | 10-2-62 | 10-62 | 10-2-62 | | 10-62 | 10-62 | 10-62 | | State | number and
ather number | | MDBGM | 14N/12W-5K1 | 14N/12W-11N1 | 14N/12W-26K1 | 15N/12W-16El | 15N/12W-21H1 | 15N/12W-35Dl | 16N/12W-5Dl | 16N/12W-502 | 16N/12W+9Q1 | 17N/12W-18A1 | 17N/12W-28M1 | | 12N/11W-2F1 | 13N/11W-701 | 13N/11W-1881 | | | Owner and | | | 6. C. Gilley | domestas | M. Mebtonen
donestre | outy of Ukiah
unicipal | Regina Water Co.
municipal | D. Broggi Ranch
domestic and
irrigation | Trank Brown
domestac | Frank Brown
irrigation | F. C. & I.
industrial
and domestic | J. E. Nelson | Harry Mathews
domesta | | A. DeMarcantonino | L. F. Hawn
irrigation | A. Damiano
irrigation | TABLE E-1 | | | Analyzed
by c | | uses | USGS | 0808 | |---|-------------------------|--|---------------------|----------------------------------|---|-------------------------------------| | 1 | 88 | | | 0 | 0 | - | | | Hardne | as CaCO 3
Tatal N.C.
ppm ppm | | 9.7 | 86 | 133 | | | - | Popular | | 15 | 27 | e . | | | Total | solved
solved
solids | | 115 | 172 | 177 | | | | Salica
(SiO ₂) Other constituente ^d | | | | | | | | Silica
(SiO ₂) | | 116 | 07 | গ্ | | | Tian | Boron
(B) | | 0.4 | 0.0 | <u>[</u> | | | per m | Flua-
ride
(F) | | 0.7 | 0.04 | 0.00
0.00 | | | equivalents per millian | NI-
trate
(NO ₃) | | 0.03 | 0.11 | 0.00 | | | odnivo | Chia-
ride
(Ci) | | 4.2 | 0,39 | 0,25 | | | ě | Sul -
fate
(SO ₄) | 7 | 9.0 | 0.02 | 0.29 | | | Mineral canstituents in | Potas - Carbon - Bicar-
sium ate banate
(K) (CO ₃) (HCO ₃) | (Cont,) | 106 | 2.21 | 2 - 15 | | | neral c | Carbon-
ate
(CO ₃) | (1-16 | 00.00 | 0,00 | 0.00 | | | ž | Potas-
sium
(K) | ALLEY | 0.9 | 0.4 | 0.00 | | | | Sodium
(Na) | SANEL VALLEY (1-16) | $\frac{7.1}{0.31}$ | 17 0.74 | 010 | | | | Calcium Magne - | | 10 | 15 | 1,36 | | | | Calcium
(Ca) | | 17 | 14
0,70 | 24
1.20 | | | | 표 | | 8.1 | 8.0 | | | | Specific | once
(micra-
mhos
at 25° C) | | 194 | 261 | 303 | | | | Te Tin of F | | 63 | | | | | | Date
sampled | | 10-62 | 10-62 | 1062 | | | State well | number and ather number | NDB62N | 13N/11W-1801 | 13N/11W-19N1 | 13N/114-30H1 | | | | Owner and use | | J.
H. Pomroy & Co.
irrigation | Hopland Public Utility
Olstrict
municipal | Grace Runh domestics and irrigation | FABLE E-1 ANALYSES OF GROUND WATER Analyzed by c DWR OWR DWR OWR DWR DWR OWR OWR 1 Ľ 3 님 님 Ⅎ Н Н Hardness as CaCO₃ Total N.C. 0 0 0 730 38 991 1118 439 185 128 304 197 Total Per-dis-cent solved sod-solids ium 73 27 17 44 33 00 2480 2880 0801 382 792 394 canstituentsd Silica Other (SiO₂) 16 24 8 [3 82 133 0.3 0.4 0,4 Boron (B) equivalents per millian 0,1 0.0 0.0 0.2 0.1 0.4 0.2 - Piug - 186 (F) trate (NO₃) 7.4 9.6 11 0.00 7.6 130 음흥(3 145 1080 28 50 76 60 1260 165 2270 369 346 18 50 Sul-fate (SO₄) 34 308 0000 0.00 00.00 35 43 34 2) Mineral constituents Bicar-banate (HCO₃) (NO. 580 500 448 9.10 116 168 433 (2-1) 246 REGION Carbon-ate (CO₃) PETALUMA VALLEY 42 12 6.0 00.00 00.00 0.00 15 SAN FRANCISCO BAY Patas-Sium (X) 6.0 21 7.0 0.02 0.6 Sodium (Na) 225 325 22 29 3.10 94 930 365 Magne -s (mg) 7.9 30 201 2,21 5.9 51 30 5.53 Calcium (Ca) 65 175 28 5,85 60 2.98 39 42 30 8.9 7,2 7.8 8.2 표 8.4 8,4 8.2 Spacific conduct-ance (micro-mhos 1270 3700 006 365 200 029 1120 7480 1300 7430 1920 193 610 658 984 Temp In °F 67 99 Date sampled 10-25-62 10-26-62 9-25-62 9-26-62 State well number and ather number 3N/7W-14Fl 3N/6W-1181 3N/6W-15M1 3N/6W-18M1 MDB6M 4N/6W-7H2 3N/6W-1Q1 3N/6W-3C1 4N/6W-7H1 stock H. Cloakie domestic and stock S. K. Herzog Co. domestic and stock Rupprecht domestic, stock, and irrigation opes irrigation and Owner and . White domestic and irrigation Karl Johnson domestic . Strozzi stock Lapes domestic 0. ్ర TABLE E-1 | | | D |---------------------|-------------------------|------------------|---|-----------------|--------------|-------------------|------------------|---------|------------|---------|---------------|----------------|---------------------------------|--------|--------------------------|------------|------------------|----------|------------------|--------| | | | Analyzed
by c | | | DWR | 11 | DWR | 11 | DWR | 77 | DWR | 11 | DWR | TT | DWR | 크 | DIVIR | 11 | DWR | 13 | | | Hardness | | P.C. | | | 0 | | 0 | | 1522 | | 9158 | | 0 | | 87 | | 0 | | 453 | | | | | Tatal | | | 32 | | 189 | | 1755 | | 9238 | | 192 | | 295 | | 126 | | 615 | | | ď | sod- | Ē | | | 93 | | 15 | | 36 | | 35 | | 09 | | 35 | | 53 | | 27 | | | Tatal | solved | | | | 524 | | 278 | | 3440 | | 18100 | | 580 | | 260 | | 334 | | 1100 | | | | | (SiO ₂) Other constituents | Salica | (SiO ₂) | | | 34 | | 17 | | 25 | | 25 | | 14 | | 21 | | 25 | | 21 | | | ion | | (8) | | | 0.8 | | 0.1 | | 0.4 | | 0.7 | | 0.5 | | 0.1 | | 0.1 | | 0.1 | | m. Ition | 3 | Fluo- | şe. | | | 0.1 | | 0.0 | | 0.1 | | 0.1 | | 0.2 | | 0,1 | | 0,1 | | 0.01 | | million and million | ants per | ž | (NO ₃) | | | 0,00 | | 3.9 | | 8.3 | | 0.00 | | 0,00 | | 0,00 | | 0.00 | | 110 | | | equivalents per million | | (i) | | 152
4,29 | 97 | 19.0 | 12 0.33 | 1720 | 1773 | 9700 | 9620 | 105 | 3.20 | 161 | 153 | 45 | 43 | 441 | 390 | | | ıls ın | | fore
(SO ₄) | ~1 | | 10 | | 16 | | 0.03 | · | 1020 | | 0.23 | | 29 | | 29 | | 34 | | | Mineral constituents | Bicor | banate
(HCO ₃) | (Cont.) | | 345 | | 3.77 | | 284 | | 98 | | 342 | | 3.75 | | 3.55 | | 3.05 | | | eral co | | (CO ₃) | (1-2) | | 15 | | 4.5 | | 00.00 | | 00.00 | | 15 | | 12
0,40 | | 3.0 | | 6.0 | | | ž | Potos - | Sium
(X) | VALLE | | 0.03 | | 2.4 | | 19 | | 45 | | 1.8 | | 3.9 | | 2.6 | | 2.3 | | | | | (Na) | PETALUMA VALLEY | | 195 | | 16 | | 463 | | 2800
102.17 | | 135 | | 75 | | 67 | | 107 | | | | Magne- | (Mg) | | | 5.9 | | 24 2,00 | | 307 | | 2085 | | 24 | | 33 | | 9.1 | | 2.29 | | | | | (Ca) | | | 3.0 | | 36 | | 197 | | 266 | | 37 | | 3,22 | | 36 | | 200 | | | | ¥ | | | | 8.6 | | 4.8 | | 1.8 | | 7.6 | | | | 8,5 | | -7
30 | | 7.8 | | | Specific | ance | mhos
at 25° C) | | 1060 | 890 | 372 | 077 | 5560 | 5500 | 23800 | 23000 | 932 | 850 | 935 | 0006 | 549 | 240 | 1910 | 1700 | | | | Temp | -
E | Date | Dandung | | 10-29-62 | 4-4-63 | 10-25-62 | 4-17-63 | 10-29-62 | 4-17-63 | 10-26-62 | 4-4-63 | 10-26-62 | +-4-63 | 10-26-62 | 4-4-63 | 11-29-62 | 4-4-63 | 10-29-62 | 4-4-63 | | | State well | number and | equip le la | MOBSM | 4N/6w-21Q1 | | 4N/6W-27R1 | | 4N/6W-33R1 | | 4N/7W-201 | | 5N/6W-30D1 | | 5N/7W-8D3 | | 5N/7W-19A1 | | SN/7W-20L3 | | | | | Dwn and | use | | L. A. Bourke | dome alle attende | S. K. Herzog Co. | | U. White | | Union Oil Co. | | F, Riebli
domestic and stock | | N. J. Matzen
domestic | | Oberg Lumber Co. | | Al's Barber Shop | | | | 70 | - |----------------------|--|---|----------|------------------------------------|---------------------------------|----------------|-----------|--------|-------------|------------|---------|-----------------------|--------|----------------|---------|-----------|---------|-------------------|---------------------------------------|--------| | | Analyzed | - | | OWR | DWR | 11 | DWR | TT | | DWR | USGS | DWR | DWR | DWR | nscs | DWR | uscs | DWR | DWR | nscs | | | os CoCO 3 | N.C
PDM | | 0 | | 0 | 22 | 22 | | | 38 | | | | 127 | | 0 | | | 0 | | | | Totol | | 174 | | 29 | 214 | 269 | | | 347 | | | | 260 | | 52 | | | 97 | | | - to 5 | Ē | | 77 | | 93 | 2.7 | 24 | | | 35 | | | | 33 | | 62 | | | 62 | | 10,01 | pevios | prios | | 353 | | 534 | 391 | 726 | | | 563 | | | | 537 | | 219 | | | 330 | | | | (SrO ₂) Other constituents ^d | College | (SrO ₂) | | 24 | | 21 | 79 | 52 | | | 27 | | | | 35 | | 12] | | | 675 | | Ę | | (8) | | 0.0 | | 0.3 | 0.0 | 0.1 | | 0.24 | 0.1 | 0.19 | | 0.20 | 0 | 0.14 | 01 | | 0.12 | 01 | | million | F 1.10 | . (F) | | 0.03 | | 0.2 | 0.4 | 0.1 | | | 0.4 | | | | 0.2 | | 0.1 | | | 0.00 | | ports per million | į | (NO ₃) | | 1.3 | | 0.00 | 17 | 0.35 | | 28 | 5.0 | 169 | 3.13 | | 0.0 | | 20 | | | 0.00 | | ports per million | 2 | \$ £ £ | | 46 | 69 | 68 | 46 | 45 | | 3.89 | 3.55 | 177 | 174 | 98 | 97 | 32 | 29 | 90 | 97 | 105 | | E | 11.0 | (SO ₄) | ~1 | 21 | | 19 | 0.35 | 20 | | | 37 0.77 | | | | 107 | | 12 0.25 | | | 0.21 | | Mineral constituents | 9 | sium ote bonote
(K) (CO ₃) (HCO ₃) | (Cont. | 282 | | 351 | 3.67 | 284 | (2-2) | | 347 | | | | 162 | | 87 | | | 126 | | erol c | The state of s | (CO 3) | (2-1) | 0.00 | | 24 | 5 0.17 | 9.0 | NOMA VALLEY | | 15 | | | | 00.00 | | 00.00 | | | 0.00 | | ž | | Sium
Sium
(K) | VALLEY | 2.0 | | 0.04 | 2.7 | 3.6 | | | 1.5 | | | | 0.03 | | 1.3 | | | 0.03 | | | | (No) | PETALUMA | 2.78 | | 197 | 36 | 39 | NAPA-S | 96 | 3.74 | 5.13 | | 59 | 58 2 52 | 42 | 41 | | 3.04 | 3.22 | | | | (M) | | 17 | | 4.4 | 24 | 30 | | | 3,00 | | | | 18 | | 6.8 | | | 1,14 | | | | (CO) | | 41 2.05 | | 4.2 | 46 | 57 | | | 3.94 | | | | 3.69 | | 9.6 | | | 0.80 | | | Ŧ | | | 0.8 | | 0.6 | e. 3 | 7.8 | | | 8.6 | | | | 8.0 | | 8.0 | | | 8.0 | | Specific | once | mhos
of 25°C) | | 585 | 848 | 880 | 580 | 700 | | 1160 | 1000 | 1500 | 1680 | 782 | 776 | 290 | 303 | 760 | 512 | 585 | | | Temp | č | Dote | sompled | | 10-26-62 | 10-26-62 | 4-4-63 | 10-26-62 | 4-4-63 | | 9-19-62 | 5-7-63 | 9-19-63 | 5-7-63 | 9-19-62 | 5-7-63 | 9-19-62 | 5-8-63 | 5-8-63 | 9-19-62 | 5-8-63 | | | Store well | other number | MDB&M | SN/7W-26E1 | 5N/7W-34E2 | | N//W-35K1 | | | 3N/3W-18GI | | 3N/3W-18G2 | | 4N/4W-2L1 | | +N/4W-5C1 | | 4N/4W-5D2 | 4N/4W-7A1 | | | | 200 | 957 | | tkinson to
irrigation and stock | r H. f Clark
domette, stock, | and irrivation | H Sarteri | | | . P. Nunn | | 1 Prekens
domestri | | apa Ca Airport | | donest c | | Ray B. dopnest B. | Price Barrelless
done at technical | | TABLE E-1 ANALYSES OF GROUND WATER 1963 | | | Analyzed
by c | | DWR | 1.56% | | 06/R | 550 | DWR | OWR | 151 | OWR | 11 | OWR | DWR |
uses | OWR | USGS | | |-------------------|-------------------------|--|---------------------------------|---------------------------------|-----------|-----------------|------------------------|---------|-------------------------------|-------------------------|---------|-----------------------|--------------|-----------------------|--------------------------|--------------------|--------------------------|---------|--| | | | | | | 50 | | | 180 | 30 | | 9 | | 0 | | | 0 | | 0 | | | | Hordness | Tatal
Ppm | | | 308 | | | 452 | 172 | | 80 | | 303 | | | 130 | | 7.0 | | | | ě | Sod mu | | | 36 | | | 77 | 27 | | 50 | | 76 | | | ~~ | | 7.1 | | | | Total | solved
solids
in ppm | | | 619 | | | 1010 | 259 | | 617 | | 1510 | | | 311 | | 336 | | | | | Sitica
(SiO ₂) Other canstituents ^d | Silica
(SiO ₂) | _ | | 17 | r-1 | oul | 36 | 27 | | 82 | | 77 | | 01 | 37 | | 545 | | | _ | Ilian | Boran
(B) | | 0,12 | ΦI | 0.27 | 0.22 | 01 | | 0.19 | 01 | 2.4 | 2.3 | 2.2 | 0.19 | 10 | 2.2 | 1.3 | | | O: E | Der mi | Fluo-
ride
(F) | | | 0.4 | | | 0.0 | 0.00 | | 0.2 | | 0.1 | | | 0.5 | | 0.4 | | | parts per million | aquivalents per millian | trate (NO ₃) | | | 24 | | | 3.8 | 0.19 | | 2.3 | 23 | 9.6 | 0.9 | | 1.0 | | 0.13 | | | ٥ | Bquive | A (10) | | 101 | 3.47 | 362 | 322
9.08 | 311 | 29 | 3.47 | 3.33 | 930 | 621
17.50 | 671 | 45 | 44 | 92 2.59 | 1,86 | | | | ë. | Sut -
fate
(SO ₄) | 3 | | 5.5 | | | 37 0.77 | 18 0.37 | | 41 | | 00.00 | | | $\frac{9.2}{0.19}$ | | 18 | | | | Mineral constituents | Carbon- Bicar-
ate banate
(CO ₃) (HCO ₃) | Cont. | | 260 | | | 332 | 3.08 | _ | 278 | | 509 | | | 3.85 | | 164 | | | | oral co | arbon-
CO 3) | (2) | | 0.13 | | | 0.00 | 0.20 | | 13 | | 15 | | | 0,00 | | 00.00 | | | | Min | Potas-Carbon- E
srum ate b
(K) (CO ₃) (t | A VALE | | 0.8 | | | 1.6 | 0.04 | | 3.2 | | 14 0.37 | | | 0.8 | | 3.1 | | | | | Sadium
(Na) | APA-SONUMA VALLEY (2-2) (Cort.) | 3.35 | 81 3.52 | 8.96 | 143 | 146 | 29 | | 182 | | 470 | | 59 | 62 2.70 | 113 | 3.61 | | | | | | | | 17 | | | 3.90 | 30 | | 9.8 | | 50 4.06 | | | 1,25 | | 7.8 | | | | | Calcium sium (Co) (Mg) | | | 96 | | | 5.14 | 20 | | 11 0.55 | | 40 | | | 27 | | 15 0.75 | | | t | | ۔ | | | -7
-00 | | | 7.9 | -7 | | 9.0 | | 8.5 | | | 8.2 | | 8.1 | | | | Specific
conduct- | ance
(micra-
mhas
of 25° C) | | 875 | 953 | 2040 | 1560 | 1580 | 5 7 7 | 176 | 876 | 3630 | 2600 | 2900 | 788 | 205 | 680 | 545 | | | | 0, 0 | Temp
in °F | | | | | | - | | | | | | | 59 | | | | | | | | Sampled | | 9-19-62 | 5-7-63 | -9-19-62 | 9-19-62 | 5-7-63 | 3-7-63 | 10-25-62 | 4-2-63 | 10-25-62 | 4-17-63 | 10-25-62 | 9-18-62 | 5-7-63 | 9-18-62 | 5-7-63 | | | | State well | number ond
other number | MDBGM | 4N/4W-12M1 | | 4N/4W-13E1 | 4N/4W-14C2 | | 4N/4w-25KI | 4N/5W-1402 | | 4N/5W-3281 | | 4N/5W-34DI | SN/4W-9Q2 | | 5N/4W-11F3 | | | | | | Owner and use | | P. Rogers
domestic and stock | | Jacobs
stock | V. Bassham
domestic | | H. Mina
domestic and stock | U. S. Navy
municipal | | Sonoma Ranch
stock | | Sonoma Ranch
stock | M. L. George
domestic | | W. Gellenger
domestic | | | | | 1 | Andlyzed
by c | | pc | nscs | 00 | SS | DK. | E | USGS | pr. | × | * | ≃ | æ | 505 | DAR | y a | |-------------------|-------------------------|---|---------------------------------|--------------|---------|------------------------|---------|-------------------------|------------------------|--------|--------------------------|-----------------------------------|-------------------------|---------------------------|---------|---|--------------------|---------| | \vdash | | _ | | DWR | 0 08 | DWR | 0 0565 | DWR | DWR | 0 0.8 | OWR | 2 DWR | OWR | OWR | U DWR | 0 | 70 | 0 | | | Hordness
00.00 | Total | | | 8 8 | | 103 | | | 119 | | 001 | | | 92 | 501 | | 106 | | | Ę. | Pod in | | | 32 | | 51 | | | 20 20 | | 17 | | | 58 | 20 | | 25 | | | Total | solved
solves | | | 195 | | 277 | | | 1280 | | 158 | | | 307 | 057 | | 272 | | | T | Silico Other constituentsd | | | | | | | | | | | | | | | | | | | ŀ | Silico
(SiO ₂) | | | 62 | | 77 | | | 28 | | 11 | | | 74 | 20 | | 92 | | | 100 | Boron
(B) | | 0.13 | 0 | 0.16 | 0.1 | | 0.49 | 0.5 | 0,72 | 0.0 | | 0,15 | 0.7 | 3.8 | 0,53 | 0.4 | | million | E | Fluo-
ride
(F) | | | 0.2 | | 0.3 | | | 0.1 | | 0.01 | | | 0.5 | 0,00 | | 0.00 | | ports per million | equivolents per million | trote
(NO ₃) | | | 3.5 | | 3.1 | | | 2.7 | | 0.00 | | 51 | 0.11 | 0.0 | | 0.02 | | 8 | oviupe | - of c
(C) | | 17 | 21 | 49 | 35 | 32.31 | 476 | 420 | 58 | 0.22 | 26 | 35 | 23 | 2.88 | 28 | 24 | | | ç | Sul -
fote
(SO ₄) | 7 | | 5.2 | | 0.6 | | | 141 | | 9,1 | | | 0.00 | 22 0.46 | | 7.6 | | | Mineral constituents | Bicor-
bonote
(HCO.) | (Cont | | 11.84 | | 3.28 | | | 342 | | 120 | | | 3.28 | 455 | | 3.21 | | | rol co | ote
CO.,) | .y (2-2 | | 00.00 | | 00.00 | | | 8 | | 00.00 | | | 8 | 0.73 | | 0.20 | | | M. | Potos - Corbon-
sium ote
(K) (CO s) | A VALLE | | 2.5 | | 0.07 | | | 7.4 | | 0.04 | | | 0.04 | 0.05 | | 0.00 | | | | Sodium
(No) | APA-SONUMA VALLEY (2-2) (CORt.) | 17 | 19 | 51 2.22 | 50 2.18 | | 67.61 | 432 | 96 | 10 | | | 61 2.65 | 218 | | 50 2.18 | | | ľ | Mogne -
s um
(Mg) | 2 | | 12 0.96 | | 13 | | | 110 | | 16 | | | 17 | 01.86 | | 1.22 | | | | Colcium (Co) | | | 15 0.75 | | 20 1.00 | | | 30 | | 15 | | | 0.70 | 24 | | 00,00 | | t | 1 | Ŧ | | | 7.9 | | 8.1 | - | | 4.8 | | 8.2 | | | 4.8 | 9.8 | | S. 5 | | | Specific
conduct- | (micro-
mhos | | 230 | 257 | 451 | 017 | 809 | 2340 | 2210 | 674 | 245 | 374 | 516 | 422 | 1080 | 450 | 398 | | | | Temp
F en | | | | | | | | | 72 | | | | | | | | | | | sompled | | 9-18-62 | 5-7-63 | 9-18-62 | 5-7-63 | 5-8-63 | 9-19-62 | 5-8-63 | 9-19-62 | 9-19-62 | 5-8-63 | 10-24-62 | 4-2-63 | 4-2-63 | 10-24-62 | 4-3-63 | | | Stote well | other number | MDB6M | | | SN/4W-15E1 | | 5N/4W-20K2 | SN/4W-21P2 | | 5N/4W-22M1 | 5N/4W-23C2 | SN/4W-29H1 | 5N/5W-1802 | | 5N/5W-20R1 | N/6W-12F1 | | | | | Owner and use | | P. A. Gasser | | John Healy
domestic | | F 0, Looney
domestic | A. L. Pov
dopiestic | | Stewart's Dairy
stock | Napa State Hospital
irrigation | J. Planagan
domestic | J. Firmingnar
domestic | | L Miglioretti
domestic and
irrigation | domestic and stock | | TABLE E-1 | | Analyzed
by c | | DWR | USGS | DWR | USCS | DWR | USGS | DWR | 11 | DWR | TI | DWR | uscs | DWR | USCS | DWR | DWR | |--|---|----------------------------------|-----------------------|--------|------------|---------|-------------------------------------|--------|-----------------------|--------|----------------------|--------|-----------------------|--------|----------------------------------|---------|---------------------------|-------------------| | 8 8 8 | as CaCO ₃ Tatal N.C | | | 19 | | 4 | | 0 | | 0 | | 0 | | 4 | | 47 | ٥ | 66 | | | 1 | | | 130 | | 146 | | 65 | | 68 | | Ξ | | 26 | | 213 | 6.8 | 261 | | | sod mu | | | 23 | | 38 | | 20 | | 99 | | 89 | | 24 | | 71 | 9.6 | 2 | | Tatol | solive
solive
spilos | | | 271 | | 350 | | 200 | | 350 | | 292 | | 72 | | 311 | 347 | 783 | | | Silica
(SiO ₂) Other constituents ^d | Silica
(SiO ₂) | | | 71 | | 83 | | 25 | | 79 | | 52 | | 26 | | 24 | 001 | 43 | | igh | Boran
(B) | | 0,18 | 01 | 0,12 | 01 | 0.21 | 0.1 | 1.4 | 1.3 | 0.56 | 1,9 | 0,09 | 01 | 0.41 | 0.3 | 0, 64 | 0.41 | | millian
sr mill | Fluo-
ride
(F) | | | 0,00 | | 0,00 | | 0.2 | | 0.02 | 0.2 | 0.00 | | 0.0 | | 0.1 | 0.4 | 0.3 | | parts per millian
equivalents per millian | NI-
trate
(NO ₃) | | - | 0,18 | | 2.8 | | 0.18 | | 00.00 | | 0,00 | | 0.03 | | 16 0.31 | 2.5 | 30 | | Palinbe | Chlo-
cci) | | 8.4 | 31 | 2,00 | 72 2.03 | 9.8 | 8,0 | 63 | 76 | 27 | 55 | 6.6 | 6.8 | 17 | 18 0.51 | 13 | 1.83 | | ē | Sul -
fate
(SO _q) | 3 | | 0.08 | | 8.0 | | 14 | | 00.00 | | 6.2 | | 60.0 | | 41 | 00.00 | 1.27 | | Mineral constituents | Bicar-
banate
(HCO ₃) | 2) (Con | | 135 | | 161 | | 11.88 | | 166 | | 140 | | 27 | | 3,26 | 248 | 3.24 | | eral co | arbon-
ate
(CO ₃) | EY (2- | | 0.00 | | 00.00 | | 00.00 | | 4.2 | | 2.4 | | 0,00 | | 0.07 | 0,00 | 00.00 | | 2 | Potas - Carbon-
sium ate
(K) (CO ₃) (| YA VAL | | 0.04 | | 2.4 | | 4.5 | | 0.31 | | 9.2 | | 0.03 | | 5.2 | 7.0 | 0.18 | | | Sodium
(Na) | RAPA-SONOMA VALLEY (2+2) (COFt.) | | 18 | | 43 | 32 | 30 | | 3.20 | | 3.55 | 7.0 | 0.18 | 20 | 0,74 | 57 | 33 | | | Magne -
sium
(Mg) | | | 15 | | 17 | | 5.8 | | 0,81 | | 2.1 | | 3.3 | | 28 | 13 | 3.21 | | | Calcium
(Ca) | | | 28 | | 31 | | 14 | | 0.55 | | 0.00 | | 5.3 | | 39 | 14 0.70 | 2.00 | | | £ | | | 8.2 | | 7.4 | | | | 7. | | 8.3 | | 7.7 | | . 3 | 7.8 | 8.2 | | Specific | | | 205 | 339 | 505 | 512 | 264 | 259 | 677 | 200 | 442 | 007 | 104 | 11 | 522 | 475 | 422 | 189 | | | Te and | Date | | 10-24-62 | 4-2-63 | 10-26-62 | 4-2-63 | 9-18-62 | 5-8-63 | 10-24-62 | 4-3-63 | 10-24-62 | 4-3-63 | 9-18-62 | 5-8-63 | 9-18-62 | 5-8-63 | 3-8-63 | 3-8-63 | | State well | number and ather number | MDBGM | 5N/6W-24K1 | | 5N/6W-25P1 | | 6N/4W-15Q1 | | 6N/6W-23M2 | | 6N/6W-26E1 | | 7N/4W-30L1 | | 7N/ -W- 5A6 | | 8: / >W-32C | 3N/ W-3201 | | | Owner and use | | M Kiser
irrigation | | Countly | | A. R. Johnson
domestic and stock | | N. Tarvid
domestic | | U Stamos
domestic | | A Fagrani
domestre | | W. Wheeler
dorestic and stock | | V. Studebaker
domestic | Connolly domestic | | | Analyzed
by c | | œ | uscs | ps. | uscs | | OE. | uscs | R | es. | | æ | ec. | | 45 | nses | |--
---|------------------|-----------------------------------|--------|---------------------------|--------|-----------------------|-------------------------|--------|---------------------------------|------------------------------------|--------|--|-------------------------|---------|-------------------------|--------| | | _ | | DWR | 1 US | DWR | 0 US | | DWR | | DWR | DWR | 0 | DWR | DWR | 0 17 | DWK | 334 US | | Hardness | T COCO 3 | | | 35 | | 51 | | | 9 135 | | | | | | | | | | | | | | 31 | | 84 | | | 35 399 | | | 171 67 | | | 81 345 | | 50 530 | | & | solved sod-
solids lum
in ppm | | | 112 3 | | 522 8 | | | 730 | | | 1070 | | | 2200 8 | | 1570 | | ₽. | | | | | | | | | | | | | | | 22 | | | | | Silica
(SiO ₂) Other constituents ^d | | | | | | | | | | | | | | | | | | | Silica
(SiO ₂) | | | 36 | | 9] | | | 28 | | | 7] | | | 119 | | 69 | | Ligh | Boron
(B) | | 0.14 | 0 | 12 | 9.6 | | | 0.6 | | | 3,4 | | | 41 | | 0.9 | | er mil | Flug- | | | 0.1 | | 5.3 | | | 0.8 | | | 0.4 | | | 0.2 | | 0.03 | | parts per million
equivalents per millian | rate
(NO ₃) | | | 4.7 | | 2.8 | | | 44 | | | 33 | | | 00.00 | | 0.21 | | po | Chio- | | 8.6 | 4.2 | 186 | 159 | | 7.25 | 5,56 | 183 | 280 | 232 | 247 | 825 | 860 | 160 | 555 | | ri si | Sul -
fate
(SO ₄) | [] | | 8.8 | | 0.2 | el el | | 0.35 | | | 63 | | | 142 | | 1,83 | | Mineral canstituents | Bicar-
banate
(HCO ₃) | EY (2-2) (Copt.) | | 0.67 | | 3.00 | EEY (2-3) | | 292 | | | 476 | | | 543 | | 3.92 | | eral c | ate
(CO ₃) | | | 0,00 | | 0.07 | 1.0 VAI. | | 15 | | | 15 | | | 24 | | 0.00 | | ž | Patas-Carbon-
sium ate
(K) (CO ₃) (| MA VAL | | 0.8 | | 8,8 | AIRFIE | | 1.4 | | | 0.04 | | | 2.3 | | 7.5 | | | Sodium
(Na) | APA-SONOMA VALI | 13 | 7.5 | 165 | 152 | SUISUN-FAIRFIELO VALL | 114 | 100 | 412 | 307 | 305 | 300 | 334 | 30.43 | 5.35 | 248 | | | Magne-
sium
(Mg) | | | 3.3 | | 5.0 | | | 65 | | | 27 | | | 51.4.15 | | 6.30 | | | Calcium
(Ca) | | | 8.7 | | 12 | | | 53 | | | 24 | | | 55 2.75 | | 86 | | | Ŧ. | | | 6.7 | | 4.8 | | | 8,5 | | | 8. | | | 8.6 | | 8.0 | | Specific | ance
(micro-
mhas
at 25°C) | | 152 | 109 | 927 | 860 | | 1400 | 1210 | 1800 | 1770 | 1650 | 1710 | 3630 | 3600 | 662 | 2250 | | | Temp
in • F | | | | | | | | | | | | | | | | | | | Date
sampled | | 9-18-62 | 5-8-63 | 9-18-62 | 5-8-63 | | 9-25-62 | 5-9-63 | 5-9-63 | 9-25-62 | 5-9-63 | 9-25-62 | 9-25-62 | 5-9-63 | 9-25-62 | 5-9-63 | | State well | number and ather number | MD86M | 9N/6W-31Q1 | | 9N/7W-25N1 | | | 3N/1E-4Bl | | 3N/1E-21D1 | 3N/1E-22F2 | | 3N/1E-22F3 | 4N/1W-33A1 | | 4N/1E-8F1 | | | | Owner and | | J. Alcouffe
domestic and stock | | R. H. Archerd
domestic | | | Mrs. Taylor
domestic | | McDougal Livestock Co.
stock | McDougal Livestock Co.
domestic | | McDougal Livestock Co.
irrigation and stock | Fish & Came Commission. | | Guy Stewart
domestic | | TABLE E-1 | | | Anolyzed
by c | | | R | | E | | K | , | E. | | gc | | K | | | E | Æ | IR. | |---|--|---|---|--------------|--------------------------------|---------|-----------------------------------|--------|-----------------------------|---------|------------------------|--------|------------|-------------|--------------------------|-------------|-----------------------|---------------------------------|--------------------------------|---------------------------------| | | 92 | | | 77
0 | DWR | 0 | DWR | 82 LL | DWR | 0 | DWR | 0 [[[| DWR | 0 17 | DWR | 0 [[[| | 706 DWR | DWR | 122 DWR | | | iordnes | os CoCO ₃ Total N.C | - | | | 7.5 | | | | е | | | - | | | | | | | | | | | sad-
nm To | | 42 450 | | 57 7 | | 33 412 | | 40 283 | | 32 336 | | 51 451 | | 53 430 | _ | 50 888 | 177 77 | 50 372 | | | loto | solved
solids
mqqni | | 952 | | 260 | | 708 | | 818 | | 546 | | 1080 | | 0901 | | 2160 | | 168 | | | 1- | Silico Other constituents ^d SiO ₂) | | | | | | | | | | | | 10 | | - | | 2 | | | | | | Silico
(SiO ₂) | | 13 | | 09 | | 22 | | 14 | | 22 | | 13 | | 16 | | 44 | | 44 | | | Lion | Boron
(B) | | 1.0 | | 0.4 | | 0.7 | | 0.6 | | = | | 1.9 | | 1.6 | | 0.7 | | 9.6 | | | millio
ser mi | Fluo-
ride
(F) | | 2.0 | | 0.1 | | 0.2 | | 0.2 | | 0.0 | | 0.6 | | 0.4 | | 0.2 | | 0.01 | | | parts per million
equivalents per million | trote
(NO ₃) | | 28 | | 0.00 | | 010 | | 0.02 | | 30 | | 21 0.34 | | 91 | | 0.00 | | 0.44 | | | d | Chio-
ride
(Ct) | | 67 | 42 | 39 | 3,21 | 98 | 2.23 | 62 1.75 | 50 | 45 | 184 | 3.05 | 58 | 1.85 | | 658 | 3.02 | 236 | | | r s | Sul-
fote
(SO ₄) | | 145 | | 00.00 | | 2.58 | | 1,80 | | 38 | | 5,18 | | 3.00 | | 13.43 | | 140 | | | Mineral constituents | Bicor-
banate
(HCO ₃) | 1 | 625 | | 2.55 | | 6.60 | | 349 | | 423 | | 575
9.43 | | 720 | -4) | 3.65 | 330 | 4.80 | | , | neral c | Carbon-
ote
(CO 3) | | 000 | | 0.00 | | 00.00 | | 00.00 | | 4.8 | | 00.00 | | 00.00 | AIN C | 00.00 | | 0.20 | | - | × | Potas-Carbon-
sium ote
(K) (CO ₃) | | 0.05 | | 2.4 | | 0.1 | | 0.03 | | 0.2 | | 0.2 | | 0.2 | PITTSBURG PLAIN (2-4) | 0,31 | | 0.12 | | | | Sodium
(No) | | 150 | 43 | 50 2.17 | 3.87 | 93 | 103 | 3.80 | 3.09 | 3.17 | 236 | 213
9.25 | 202
8.79 | 223
9.70 | PITE | 415 | 182 | 7.60 | | | | Mogne-
sium
(Mg) | | 34 | | 8.5 | | 44 | | 42 3.46 | | 3,19 | | 57 | | 3.78 | | 9,76 | | 54 4.41 | | | | Calcium
(Ca) | | 125 | | 16 | | 93 | | 44 | | 3.54 | | 86 | | 97 | | 160 | | 3.02 | | | | Į. | | 8.0 | | 7.5 | | 8.2 | | 8.2 | | 8.3 | | 7.8 | | 8.1 | | 8.0 | 0.0 | 8.3 | | | Specific | | | 1340 | 378 | 380 | 1120 | 1100 | 1070 | 840 | 772 | 870 | 1860 | 1640 | 1500 | 1540 | | 3200 | 1480 | 0671 | | | | Temp
in °F | | | | | | | | | | | | | | | | | 69 | 99 | | | | Dote | | 5-8-63 | 9-25-62 | 5-8-63 | 9-25-62 | 5-8-63 | 9-25-62 | 5-8-63 | 9-25-62 | 5-8-63 | 9-25-62 | 5-8-63 | 9-25-62 | 5-8-63 | | 6-6-63 | 6-6-63 | 6-6-63 | | | Stpte well | number and other number | | 4N/2W=4D1 | 4N/2W-5Q2 | | 4N/2W-18M1 | | 4N/3W-13G2 | | 5N/2W-27J4 | | 5N/2W-34Nl | | 5N/2W-34P4 | | | 2N/1E-7R2 | 2N/1E-22C1 | 2N/2E-20A1 | | | | Owner and | | W. F. Heally | Southern Pacific R.R. domestic | | F. P. Smith
domestic and stock | | D. R. Mangels
irrigation | | H. J. Beck
domestic | | domestic | | Morris Tract
domestic | | | Continental Can Co.
domestic | Dow Chemical Co.
irrigation | Fibreboard Products
domestic | | Dom ppm ppm ppm ppm ppm ppm ppm ppm ppm p | |---| | 5 17 294 | | 386 | | 0.1 0.37 29 | | $\begin{array}{ccc} 27 & 12 & 0.1 \\ \hline 0.76 & 0.19 & 0.00 \end{array}$ | | 0.00 4.70 1.33 0. | | 1.22 0.02 0.00 | | | | 2 2 0011 | | 67 11 6 | | | | and domestic | | | Analyzed
by c | | OWR | OWR | | USGS | uses | usgs | USGS | USGS | uscs | USGS | USGS | uses | USGS | USGS | |-------------------------|---|---------|--------------------------|------------|-----------------------|---|----------------------------------|------------------------------|------------------------|--|------------|---|---------------------------|----------------------------|---|-------------------------------| | ne 3 s | as CoCO ₃ Tatal N.C. | | 759 | 178 | | 224 | 0 | 1350 | 0 | 228 | 1460 | 0 | 76 | 0 | 0 | 0 | | | | | 1230 | 681 | | 967 | 206 | 2400 | 210 | 430 | 1550 | 158 | 332 | 184 | 161 | 187 | | à | read sod | | 31 | 25 | | 30 | 57 | 23 | 97 | ž | 26 | 8 | 22 | 41 | 57 | 55 | | Total | solved
solids | | 2170 | 926 | | 868 | 558 | 3770 | 757 | 836 | 2560 | 375 | 501 | 343 | 7,68 | 627 | | | Silica
(SiO ₂) Other constituents ^d | | | | | | | | | | | | | | | | | ļ | Silica
(SiO ₂) | | 36 | 25 | | 24 | 42 | 36 | 37 | 36 | 36 | 35 | 30 | 23 | 53 | 28 | | Tion | Baron
(B) | | 1.9 | 0,50 | | 0.1 | 0.1 | 0,3 | 0.3 | 0.3 | 0,3 | 0.4 | 0.3 | 0.3 | 0.2 | 0.2 | | er mi | Fluo-
ride
(F) | | 0.03 | 0.2 | | 0.2 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.0 | 0.1 | 0.1 | | equivalents per million | ni-
trate
(NO ₃) | | 136 | 0.03 | | 0.39 | 8.9 | 18 0.29 | 0.5 | 0.9 | 0.9 | 4.6 | 58 | 2.1 | 2.1 | 0.03 | | Annbe | Chia-
ride
(CI) | | 534 | 241 | | 217 | 160 | 2020 | 90 2,54 | 292 | 1290 | 28 | 43 | 0.76 | 86 | 3.86 | | its in | Sul -
fore
(SO ₄) | | 414
8.62 | 36 | N (2-9) | 2.10 | 18 0.37 | 3,29 | 96*0 | 35 | 130 | 25 0.52 | 55 | 0.46 | 0.67 | 0.42 | | constituents | Bicar-
banate
(HCO ₃) | (Cont.) | 9.41 | 614 | DF SANFA CLARA VALLEY | 332 | 256 | 1.05 | 260 | 3.87 | 108 | 288 | 284 | 284 | 266 | 3.72 | | Minerol | ate
(CO ₃) | (2-6) | 0.00 | 00.00 | A CLA | 00.00 | 8 | 00.00 | 0.07 | 0,07 | 00.00 | 14 0.47 | 14 0.47 | 12 0,40 | 12 0,40 | 0.33 | | ž | Poros-Carbon-
sium ate
(K) (CO ₃) (| VALLEY | 0.9 | 1.4 | OF SAN | 0.03 | 6.8 | 16 | 4.3 | 0.20 | 16 | 5.2 | 2.7 | 3,6 | 1.4 | 0.04 | | | Sodium
(Na) | YGNACIO | 250 | 106 | BAY AREA | 100 | 129 | 328 | 3.74 | 103 | 254 | 3.26 | 44 | 2.65 | 100 | 105 | | | Magne-
sium
(Mg) | | 156 | 93 | EAST | 5,48 | 28 2,32 | 20.68 | 19 1.56 | 35 2.86 | 149 | 17 | 3.15 | 20 1.63 | 1.47 | 22 | | | Calcium
(Ca) | | 236 | 5.94 | | 89 | 36 | 549 | 53 | 5.74 | 376 | 35 | 3.49 | 41 2.05 | 35 | 38 | | | F | | 7.9 | 7.9 | | 8.1 | 8.6 | 7.8 | e.
60 | 8,3 | 7.9 | 8,6 | 8.5 | 8.6 | 8.7 | 8.6 | | Specific conduct- | ance
(micra-
mhos
at 25° C) | | 3220 | 1650 | | 1400 | 766 | 6240 | 777 | 1380 | 4330 | 609 | 795 | 575 | 765 | 857 | | | Temp
in °F | | | | | 67 | 89 | 68 | 99 | | | | 65 | | 69 | 69 | | | Sampled | | 7-10-62 | 7-10-62 | | 6-17-63 | 6-17-63 | 6-18-63 |
6-18-63 | 6-18-63 | 6-18-63 | 6-18-63 | 6-18-63 | 6-18-63 | 6-18-63 | 6-18-63 | | State wall | other number | NOBGM | 2N/2W-36E1 | 2N/2W-36E2 | | . 1S/4W-4A1 | 1S/4W-34F2 | 2S/3W-21J1 | 2S/3W-28G1 | 2S/3W-30A | 2S/3W-3002 | 2s/3w-33H3 | 2S/3W-34A2 | 28/3W-3403 | 2S/4W-3E1 | 2S/4W-3F1 | | | Owner and use | | A. Buscaglía
domestic | domestic | | Manass Block Tanning Co. 15/4W-4Al industrial | Red Star Yeast Co.
industrial | General Metals
industrial | A, Ratto
irrigation | Alameda Municipal
Golf Course
irrigation | Soares | Hohener Packing Co.
domestic and
industrial | R. A. Zobel
irrigation | J. A. Jacklich
domestic | Alameda Naval Air
Station
municipal | Todd Ship Yards
Industrial | | | - 77 | | | | | | | | | | | | | | | | | | |----------------------|----------------------------------|---|---------------------------------|---|--------------|-------------------------------|-----------------------------|-------------------------|--|------------------------|-----------------------------|-----------------------|--------------------------------|-----------------------------|-----------|---|--------------------------|---------| | | Anolyzed | by c | | USCS | 0.868 | OSCS | OSCS | 77 | 77 | 0.50% | DWR | ± | 77 | DAK | DAR | DWR | DWR | DWK | | | Hardness
as CaCO ₃ | N.C
ppm | | 0 | 0 | 96 | 00 00 | 601 | 0 | 0 | 01 | 80 | 40. | | | | 707 | | | | | Tatai | | 103 | 168 | 37.7 | 707 | 521 | 102 | 176 | 214 | 909 | 774 | | | | 470 | | | | Cent | g E | | 43 | 09 | 0.5 | E . | 28 | 7. | 99 | 63 | -1 | 35 | | | | 77 | | | | dis- | - 1 | | 218 | 470 | 496 | 704 | 764 | 977 | 585 | 626 | 1200 | 1390 | | | | 671 | | | | | (SiO ₂) Other canstituents ^d | | | | | | | | | | | | | | | | | | | L | (Si0 ₂) |
 | 28 | 26 | 39 | 티 | 23 | 22 | 37 | 2 | 26 | 24 | | | | 50 | | | - | 5 | (B) | | 0,1 | 0,3 | 0.4 | 0,3 | 0.5 | 0.5 | 0,7 | 0,54 | 1.9 | 9.6 | | | | 0,46 | | | oillie. | E . | (F) | | 0,1 | 0,1 | 0.0 | 0.0 | 0.2 | 0,01 | 0.1 | 0.0 | 0.04 | 0.2 | | | | 0,0 | | | parts per million | S L | trate
(NO ₃) | | 0.02 | 0.03 | 51 | 39 | 0,87 | 0.00 | 0,6 | 0,4 | 1.37 | 141 | | 43 | | 23 | | | ă | 0 | CE) | nt.) | 38 | 91 2.57 | 83 | 150 | 3,52 | 91 2.55 | 3,27 | 245 | 5.28 | 404 | 58 | 2.23 | 54 | 150 | 225 | | ot ste | | fore
(SO ₄) | ANTA CLARA VALLEY (2-9) (COME.) | 0.27 | 96*0 | 95 | 98 | 91 | 59 | 54 | 37 | 210 | 122 | | | | 2,23 | | | Mineral constituents | 4 | banote
(HCO ₃) | VILEY (| 148 | 265 | 142 | 288 | 10.8 | 248 | 336 | 249 | 638 | 454 | | | | 328
5,38 | | | o lored | | ate
(CO ₃) | ARA V | 0,07 | 19 | 0,20 | 0.00 | 7.2 | 0,00 | 0,07 | 0.00 | 00.00 | 0.00 | | | | 00.00 | | | 2 | | Sium ate (K) (CO ₃) (| ANTA C | 0,10 | 2,2 | 4.2 | 6.6 | 0.8 | 2.5 | 7.2 | 3.0 | 1.1 | 0,03 | | | | 2.3 | | | | | (Na) | REA OF S | 38 | 5.05 | 3,04 | 3,70 | 95 | 5.87 | 148 | 7,48 | 216 | 195 | | | | 64 | | | | | Magne -
s.um
(Mg) | EAST BAY | 0.91 | 15. | 36 2.98 | 3,04 | 41 3.40 | 8.0 | 20 | 2.3 | 23 | 94 | | | | 3,65 | | | | | Calcium
(Ca) | 3 | 23 | 43 | 30 | 101 | 7,01 | 1,38 | 38 | 82 4,09 | 204 | 155 | | | | 5.74 | | | | 7 | Š | | 2.5 | 80.80 | 4.8 | 00.1 | 8,3 | 8.2 | 8.3 | 8.2 | 00 | 7.8 | | | | 8.2 | | | Specific | conduct-
ance | (micro-
mhas
at 25° C) | | 379 | 816 | 787 | 1180 | 1360 | 735 | 1000 | 1200 | 1900 | 2050 | 858 | 978 | 827 | 1140 | 1420 | | | Temp | <u>C</u> | | 67 | | 9 | 79 | | 74 | | 99 | | | | | | | | | | 000 | sampled | | 6-18-63 | 6-18-63 | 6-20-63 | 6-20-63 | 6-20-63 | 6-20-63 | 6-20-63 | 6-20-63 | 6-20-63 | 6-20-63 | 5-14-63 | 5-17-63 | 5-7-63 | 6-62 | 5-10-63 | | | State well
number and | ather number | NOBGN | 2S/4W-12R1 | 2s/4w-25A1 6 | 3S/2W-7J1 | 3S/2W-19R4 | 3s/2w-30R14 | 35/2W-3203 | 3S/3W-1G3 | 38/3W-11Q1 | 3S/3W-13B2 | 38/3W-24Q2 | 48/18-712 | 45/18-781 | 4S/IW=7R5 | 48/1W-1714 | | | | | 957 | | Alameda High School
domestic and
irrigation | Ratto | Bayside Nursery
irrigation | Kruger & Sons
industrial | Al Mateas
irrigation | Mount Eden Nursery Co.
domestic and
irrigation | Avansino Mortensen Co. | Irujan Powder
industrial | Gamelli
irrigation | J. Harat
domestic and stock | (wissig Bros.
irrigation | Fudena | Decote Masonie Rome
domestic and
irrigation | M. Freitas
Arrigation | | ## TABLE E-1 ANALYSES OF GROUND WATER | | Analyzed | | | · · | | | ~ | S | ~ | ~ | ~ | ~ | ~ | 20 | |--|-------------|--|---|----------------------------|------------|---|--------------------|-------------------------|------------|-----------------------------------|------------|-----------------------------------|---|--| | _ | | _ | | USGS | DWR | DWR | OWR | USGS | DWR | DWR | DWR | OWR | 63 DWR | 56 DWR | | rdness | os CaCO3 | D E C | | 97 | | | | 1650 | | 322 | | | | | | | | Total | | 1 254 | | | | 12 1690 | | 15 544 | | | 27 252 | 30 222 | | - | solved sod- | ž . | | 434 31 | | | | 2500 1 | | 1 695 1 | | | 431 2 | 371 | | Taf | | | | 77 | | | | 25(| | 9 | | | | | | | | (SiO ₂) Other constituents | | | | | | | | ABS 0.0 | | | 13 cr ⁺⁶ 0.00
A1 0.08 As 0.00
Nu 0.00 Ps 0.00
T.0. 70 Se 0.00
Cr.0.00 (total)
Fe 0.01 (Total) | Cr ⁺⁶ 0,00
A1 0,27 % 0,01
Nn 0,00 kn 0,00
Nn 0,00 kn 0,00
Cr 0,00 (Total)
Phyenols 0,000 | | | Silico | (Si O | | 21 | | | | 17 | | 17 | | | 69.00 | 15 | | llion | | <u>@</u> | | 0.2 | | | | 0,3 | | 0,44 | | | | 0.63 | | Per m | Flug | (F) | | 0.1 | | - | | 0.3 | | 0.00 | | | 0.02 | 0.02 | | parts per millian | ż | (NO ₃) | | 27 | | | | 9.3 | | 12 0.19 | | 4.4 | 0.04 | 0.04 | | parts per millian
equivalents per millian | | (CC) | nt.) | 76 | 96 | 245
6.91 | 635 | 1280
36,11 | 1460 | 246 | 3.58 | 84 | 62
1,75. | 72 2.03 | | 5 | - InS | (SO ₄) | 00) (6- | 1,42 | | | | 23 | | 1.37 | | | 1.39 | 1.02 | | Mineral canstituents | Bicar- | (CO ₃) (HCO ₃) | LEY (4 | 3.13 | | | | 51 | | 255 | | | 3,77 | 3,31 | | rol cal | ar bon- | ote
CO 3) | RA VAI | 00.00 | | | | 00.00 | | 8 | | | 00.00 | 00.00 | | M | otas-C | (K) (CO ₃) (t | ITA CLA | 0.04 | | | | 01.0 | | 2.4 | | | 0.05 | 0,00 | | | 4 | | EAST BAY AREA OF SANTA CLARA VALLEY (4-9) (CORt.) | 53 | | | | 108 | | 46 | | | 43 | 1,91 | | | Magne - | (Mg) | T BAY & | 40 | | | | 184 | | 50 | | | 27 2.19 | 1.85 | | | 2000 | (Ca) | *** | 35 | | | | 374 | | 135 | | | 57 2.84 | 52
2.59 | | | 玉 | | | 8.2 | | | | 7.5 | | 5.0 | | | 7.7 | 7.9 | | Spacific | ance | mhas
at 25° C) | | 709 | 1060 | 1550 | 2430 | 3980 | 4830 | 1290 | 804 | 720 | 888 | 979 | | 0, | Temp | | | | | | | | | | | | | 63 | | | Oate | | | 9-62 | 5-7-63 | 5-7-63 | 5-7-63 | 9-62 | 5-7-63 | 9-62 | 5-9-63 | 5-17-63 | 9-6-62 | 12-5-62 | | State well | number and | | MOBGM | 45/14-1801 | | 48/18-1861 | 4S/IW-18H3 | 4S/1W-18N7 | | 4S/1W-2002 | | 4S/1W-20E1 | 45/IM-21F2 | | | | Owner and | 85.7 | | J. M. Enos
domestic and | irrigation | Pacific States Steel
Company
industrial | American Forge Co. | M. Rose
domestic and | irrigation | Santa Cruz-Portland
Cement Co. | irrigation | Niles Sand & Gravel
industrial | Citizens Utilities Co. of California municipal | | | ٢ | | Pez o | Т | | | | | | | | |-------------------|-------------------------|---|---------------------|----------------------------------
---|---------|---|---|---|--| | | | Analyzed
by c | | | DWR | DWR | OHR | DWR | DWR | OWR | | | Hordness | 0 N | | | \$ | | 29 | 19 | 28 | 19 | | | | | Edd | | 265 | | 265 | 269 | 276 | 243 | | - | à | S S S | | | 30 | | 28 | 25 | 26 | 28 | | | Total | solved
solids | | | 503 | | 412 | 731 | 421 | 391 | | | | Silico Other constituents ^d | | | Cr ⁺⁶ 0.00 A1 0.00 As 0.00 Cu 0.01 Pb 0.00 TO 1.1 Se 0.00 Cr 0.00 (Total) Fe 0.00 (Total) ABS 0.00 | | Cr ⁺⁶ 0.00 ABS 0.00 Cs 0.00 ABS 0.00 Cs | Cr ⁺⁶ 0.00
M 0.10 As 0.00
M 0.00 Eb 0.00
M 0.00 E 0.00
Cr 0.00 (Total)
Fe 0.02 (Total)
Phenols 0.000 | Cr ⁺⁶ 0.00
A1 0.00 A8 0.00
Pb 0.00 Nh 0.00
To 0.09 Se 0.00
Cr 0.00 (Total)
Fe 0.02 (Total)
Phenols 0.000 | Cr ⁺⁶ 0.00
Al 0.00 As 0.00
Cu 0.00 Ps 0.00
T.O. 2 Se 0.00
Cr 0.01 (Total)
ABS 0.00 | | | | Silico
(SiO ₂ | | | 71 | | 21 | 16 | 18 | 16 | | 1 | ion | Boron
(B) | | | 0.59 | | 0,58 | 09.0 | 0.62 | 0.58 | | 11.6 | er mi | Flua-
ride | | | 0.03 | | 0.03 | 0.2 | 0.03 | 0.00 | | colling and stone | ents p | - in the state of | 1803 | | 8.4 | 0.08 | 6.2 | 0.03 | 0.03 | 0.03 | | 1 | equivalents per million | Chio- | (CI) | nt.) | 2,48 | 80 | 1.92 | 1.35 | 1.38 | 54 | | | us in | Sul -
fore | - 1 | SANTA CLARA VALLEY (2-9) (Cont.) | 67 | | 1.60 | 85 | 1.77 | 82 | | | Mineral constituents | Potas - Carbon - Bicar-
sium ate banate | (HCO ₃) |) KET | 3.60 | | 3.72 | 254 4.16 | 266 | 3.64 | | | eral co | Carbon- | (60) | ARA VA | 00.00 | | 00.00 | 0.00 | 0.00 | 0.00 | | | ž | Pofas- | Š. | ANTA C | 0.06 | | 0.09 | 0.05 | 2.1 | 0.05 | | | | Sadium
(No) | | REA OF S | 53
2,30 | | 48 2.09 | 42 | 44. | 1,96 | | | | Magne - | (BW) | EAST BAY | 2.30 | | 1.45 | 2.33 | 28 2.32 | 29 | | | | Colcium Magne - | | ă | 2.99 | | 3.84 | 3.04 | 3.19 | 2,44 | | | | ¥ | | | φ
κ | | 8.1 | 7.8 | 8.1 | 8.2 | | | Specific | | at 25° C | | 757 | 790 | 720 | 702 | 711 | 779 | | | | Temp
in °F | | | 65 | | | | 62 | 99 | | | | Date | | | 3-7-63 | 5-17-63 | 6-6-63 | 9-6-62 | 12-5-62 | 3-7-63 | | | Stote well | number and
other number | | MDBGM | 65/IW-21F2 | | | 4S/IW-2IMI | | | | | | Owner and use | | | Citizens Utilities Co.
of California
municipal | | | H. J. Kaiser Co.
industrial | | | | | | pez/ | | | | | | | | | | | | | | | | | |-------------------|-------------------------|------------------|--|--------------------------------|------------------|--|--------------------|---------------------------|--------------|------------------------------|---------|-----------------------------|------------|-----------------------|--------|-------------------------------|------------|----------------------------| | | | Anolyzed
by c | \rightarrow | | DWR | DAR | DWR | uscs | DWR | DWR | DWR | USGS | 1907 | USGS | DAIR | DWR | DWR | USGS | | | Hardness | 000 | N.C. | | | 8 | | 0 | | 0 | | 0 | | 14 | | 362 | _ | 34 | | | | | Total | | | 293 | | 158 | | 103 | | 208 | | 173 | | 573 | | 182 | | - | , a | Sod | E 2 | , | | 24 | | 7.7 | | 80 | | 43 | | 35 | | 61 0 | | 33 | | | Total | solved | | | | 753 | | 349 | | 1020 | | 397 | | 309 | | 769 | | 325 | | | | 00 | (SiO ₂) Other constituents | | | 17 cr +6 0.00 A1 0.00 A8 0.00 RM 0.00 PR 0.00 TO -4 Se 0.00 Cr 0.00 (Trotal) Fe 0.00 (Trotal) Phenols 0.00 A8S 0.0 | | 20 ABS 0.0 | | 33 ABS 0.0 | | 19 ABS 0.0 | | 22 ABS 0,00 | | 14 ABS 0.0 | | 17 | | | - | ran Sil | (B) (S | | | 0,63 | | 8 0 | 0.93 | 3.8 | 0.4 | 8.0 | | 0.3 | | 0.63 | | 0.6 | | llion | millia | | (F) | | | 0,03 | | 0.02 | | 0.4 | | 0,4 | | 0.0 | | 0,100 | - | 0.03 | | oorte oer million | nts per | ž | trote
(NO ₃) | | 2.0 | 0.04 | 4.8
0.0B | 5.7 | | 6.3 | | 8.4 | | 3.5 | | 0.07 | | 3.7 | | 100 | equivalents per million | | | 7 | 54 | 62 | 63 | 38 | 45 | 88 | 72 2.03 | 44 | 43 | 36 | 35 | 309 | 270 | 46 | | | ē | Sul - | fote
(SO ₄) | NTA CLARA VALLEY (2-9) (Cent.) | | 81 | | 69 | | 45 | | 72 | | 51.1 | | 63 | | 73 | | | Minaral canstituents | Bicar- | (HCO ₃) | TEX (3- | | 258 | | 3,38 | | 832 | | 260 | | 3,18 | | 257 | | 180 | | | ral car | -uoqu | 00°3) (| IRA VAI | | 00.00 | | 4 0.13 | | 40 | | 3 | | 0.00 | | 00.00 | | 0.00 | | | Mina | Patas-C | (K) (CO ₃) | NNTA CLA | | 0.05 | | 0.04 | | 8.8 | | 0.05 | | 2.0 | | 2.5 | | 1.6 | | | | Coding | (Na) | EA OF SM | | 42
1.83 | | 66 | | 375 | | 3.22 | | 43 | | 61 2.65 | | 46 | | | | Magne - | (Mg) | I SAY A | | 27 2.21 | | 20 | | 12 0.96 | | 22 | | 20 | | 52 | | 28 2.34 | | | | - | (Ca) | ISVE | | 73 | | 30 | | 22 | | 47 | | 36 | | 143 | | 26 | | | | £ | | | | C *0 | | .3 | | 8.7 | | e. % | | 8.1 | | 8.3 | | 8.2 | | | Spacific
canduct- | ance
(mlcro- | mhas
at 25° C) | | 728 | 739 | 734 | 491 | 729 | 1630 | 1310 | 929 | 826 | 515 | 625 | 1380 | 1370 | 562 | | | | Temp
in °F | Sampled | | | 5-17-63 | 6-6-63 | 5-17-63 | 9-62 | 5-9-63 | 9-62 | 5-9-63 | 9-62 | 5-8-63 | 9-62 | 5-7-63 | 9-62 | 5-9-63 | 10-1-62 | | | State well | other number | | NDBGM | 45/IW-2INI | | 4S/IW-21P6 | 4S/1W-21R2 | | 4S/1W-22M2 | | 4S/1W-28B2 | | 4S/1W-28C14 | | 4S/1W-28D4 | | 4S/1W-28D7 | | | | Owner and | 987 | | H. J. Kaiser Co. | | A.C.W.D. municipal | M. Desalles
irrigation | and domestic | A. J. Rezendes
irrigation | | J. S. Dutra
domestic and | irrigation | A.C.W.D.
municipal | | J. & M. Braga
domestic and | irrigation | Vm. E. Edwards
domestic | | Numbrol constituents Numbrol Corbon Bucar Pudas - Corbon Bucar Pudas - Corbon Bucar Pudas - Corbon Pudas - Corbon Pudas - | | | | | | | | | | | | ā | arts per | parts per million | | | | | | | |
--|---|------------------------|--------------------|------------------------|-----------------------------|-----|-------|---------|---------------------------|--|-------------------------------------|------------|-----------------------------|-------------------|--------------|-------------------------------|---------------------------------|---------------|-----|------------------|--| | Ni | | Specific conduct- | | | | | | 2 | eral co | nstituent | S In | odnive | lents p | ber mi | ug: | | | Total
dis- | Per | Hardne
as CaC | | | 25 3.6 | number and Udie Tamp ance PH Calcium Magner Sad alber number sompled in °F (micro- pH (Calcium Magner Sad alber) (Ca) (Mg) (Mg) | minas (Co) (Mg) | Calcium Magna- | Magna-
sium
(Mg) | Magne - Sad
sium
(Mg) | Sod | E G | | ate
(CO ₃) | Bicar-
banote
HCO ₃) | Sul -
fore
(SO ₄) | Chia- | rrate
(NO ₃) | ride
(F) | Baran
(B) | Silica
(SiO ₂) | Other constituents ^d | | Pos | otai | | | 1.8 4 1.82 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.0 | EAST EAV AREA O | EAST BAY AREA O | EAST BAY AREA OI | EAST BAY AREA OI | BAY AREA OF | 5 | SS 60 | NTA CLP | RA VALI | LEY (2- | 9) (Cor | <u>:</u>] | | | | | | | | | | | 1.6 | 5-17-63 | 770 | | | | | | | | | | 62 | 3.6 | | | | | | | | | | 1.5 | 9-62 436 8.3 28 14 14 1.16 | 8.3 28 14
1.40 1.16 | 28 14
1.40 1.16 | 14 | | | 44 | | | 182 | 38 | 26 | 2.4 | | | 22 | ABS 0.0 | 260 | | 128 | | | 1.6 0.00 0.04 0.04 0.05 0.01 0.04 0 | 5-63 562 | 562 | | | | | | | | | | 23 | | | | | | | | | | | 1.8 2.08 1.99 1.10 1 | 5-17-63 718 | 718 | | | | | | | | | | 47 | 50 | | | | | | | | | | 1.0
1.0 | 9-62 2630 7.7 156 108 8.92 | 7.7 156 | 156 | | 108 | | 180 | | | 304 | 95 | 619 | 31 | | | | ABS 0,00 | 1580 | | | | | 1.0 | 5-8-63 3250 | 3250 | | | | | | | | | | 738 | | | | | | | | | | | 1.8
0.05 8
0.27 2.08
3.41 54
1.12 9.0
0.02 0.2
0.02 2.1
0.02 0.2
0.02 2.1
0.02 0.2
0.02 2.1
0.02 0.2
0.02 2.1
0.02 0.2
0.02 2.1
0.02 0.2
0.02 2.1
0.02 0.2
0.02 2.1
0.03 0.2
0.06 2.1
0.03 0.2
0.06 2.0
0.02 0.2
0.02 2.0
0.03 0.2
0.03 0.2
0.03 2.1
0.03 0.2
0.03 0.2
0.03 0.2
0.03 2.1
0.03 0.2
0.03 0.2
0.03 2.1
0.03 0.2
0.03 < | 9-62 835 8.1 63 314 2.54 | 8.1 63 | 63 | | 31 | | 45 | 2.0 | | 149 | 50 | 155 | 5.7 | | | 25 | ABS 0,00 | 537 | | | | | 1.8 8 2.08 2.4 90 1.2 0.3 0.4 21 ABS 0.0 425 78 79 79 79 0.05 0.05 0.37 0.02 0.02 0.04 21 ABS 0.0 425 78 79 79 79 1.6 0.05 0.32 0.02 0.04 28 ABS 0.0 444 179 71 1.6 0.05 0.12 0.06 0.02 0.04 28 ABS 0.0 444 179 71 1.6 0.06 2.16 0.06 0.02 0.04 28 ABS 0.0 444 179 71 1.6 0.06 2.16 0.06 0.02 0.04 28 ABS 0.0 444 179 71 1.2 0.06 0.07 0.06 0.09 0.03 0.06 0.09 0.04 28 ABS 0.0 0.04 44 179 71 1.2 1.2 0.0 | 5-7-63 | 1160 | | | | | | | | | | 218 | _ | | | | | | | | | | 1.6 | 9-62 735 8.4 19 7.7 0.63 | 8,4 19 | 19 | | 7.7 | | 131 | 1.8 | 8 | 3,41 | 54 | 90 2,54 | 0.02 | | | | ABS 0.0 | 425 | 78 | 79 | | | 1.6 0.0 132 49 116 2.06 0.02 0.04 28 ABS 0.0 04 44 179 71 0.06 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05 | 5-7-63 778 | 778 | | | | | | | | | | 86 2.43 | _ | | | | | | | | | | 1.6 0 0 1.22 4.4 1.79 7.1 1.6 0 0 0 0 0 0 0 0 0 | 5-8-63 1490 | 1490 | | | | | | | | | | 334 | | | | | | | | | | | 2.1
0.03 | 9-62 677 8,1 42 18 | 42 | 42 | | 18 | | 65 | 0.04 | | 132 | 49 | 3.27 | 3.7 | | | | ABS 0.0 | 777 | | 179 | | | 2.1 | 5-7-63 | 811 | | | | | | | | | | 102 | | | | | | | | | | | 2.1 | 5-8-63 | 2220 | | | | | | | | | | 426 | | | | | | | | | | | | 5-17-63 | 1100 | | | | | | | | | | 5.33 | 2.1 | | | | | | | | | TABLE E-1 . ANALYSES OF GROUND WATER 1963 | | | Anafyzad
by c | | nscs | USGS | DWR | uses | DWR | USGS | DWR | nscs | OWR | uses | DWR | USGS | DWR | usgs | OWR | | |------------------|-------------------------|--|---|---------------------------|---------------------------------|---------|----------------------------|------------|-------------------------|------------|-----------------------|--------|-----------------------|--------|-------------------------|------------|------------------------------------|--------|--| | | 1ne 5s | as CaCO ₃ Total N.C | | 1620 | 45 | | 0 | | 88 | | 0 | | 0 | | 0 | | 0 | | | | | | | | 15 1690 | 280 | | 237 | | 352 | | 110 | | 129 | | 144 | | 130 | | | | + | - 6 | ds sod | | | 660 52 | | 583 56 | | 612 35 | | 310 60 | | 370 62 | | 359 55 | | 333 53 | | | | - | ٩ | salved
solids
on ppm | | 2470 | 99 | | Š | | | | <u></u> | | .e | | ří . | | Н | | | | | | Sitico Other constituented | | ABS 0.00 | ABS 0.0 | | ABS 0.0 | | | | ABS 0.0 | | A8S 0,0 | | ABS 0.0 | | ABS 0.0 | | | | | | (SiO ₂) | | 26 | 25 | | 26 | | 27 | | 133 | | 24 | | 25 | | 23 | | | | 8 | IIIian | Boran
(B) | | 9.6 | 0.8 | | 0.9 | | 0.2 | | 0.2 | | 0.3 | | 0.2 | | 0.2 | | | | oction as action | aquivalents par millian | Flua-
ride
(F) | | 7 0.01 | 4 0.01 | | 0.2 | | 0.3 | m 60 | 9 0,02 | -18 | 3 0.01 | | 0.00 | | 4.1
0.07
0.01 | | | | 00000 | valents | rate
(NO ₃) | | 29 | 27 | | 50 | | 52 | 69*0 | 0.19 | 0.00 | 8.1 | | 2.0 | | | | | | | 700 | Ci) | <u></u> | 35,26 | 173 | 3.95 | 2.79 | 103 | 3.95 | 143 | 37 | 37 | 40 | 42 | 18 0,51 | 20 | 98.1 | 54 | | | | nts tn | Sul -
fate
(SO ₄) | o) (6 | 75 | 83 | | 84 | | 29 | | 19 | | 21 0.44 | | 41 | | 35 0.73 | | | | | Mineral canstituents | Carbon- Bicor-
ate bonote
(CO ₃) (HCO ₃) | LEY (2 | 92 | 286 | | 286 | | 294 | | 244 | | 326 | | 289 | | 172 | | | | | naral c | Potas-Carbon-
sium ate b
(K) (CO ₃) (t | ARA VA | 0.00 | 0,00 | | 15 | | 14 0.47 | | 5 0.17 | | 5 0.17 | | 0,33 | | 0.00 | | | | | N | Potas-
sium
(K) | NTA CI | 4.2 | 3.4 | | 3.4 | | 0.05 | | 0.04 | | 0.04 | | 0.04 | | 2.3 | | | | | | Sadium
(Na) | BAY AREA OF SANTA CLARA VALLEY (2+9) (Corft.) | 5.96 | 139 | | 139 | | 3.74 | | 3.44 | | 99 | | 3.52 | | 68 2.96 | | | | | | Magne-
sium
(Mg) | | 119 | 24 | | 52 2.84 | | 3.51 | | 17 | | 18 | | 80.1 | | 13 | | | | | | Calcium
(Ca) | EAST | 483 | 1.20 | | 9.6 | | 3,54 | | 16 | | 22 | | 1.80 | | 30 | | | | | | Ŧ | | 7.5 | 8.1 | | 8.5 | | 8.5 | | . 3
. 3 | | 8. 3 | | 200 | | 8.2 | | | | | Spacific
conduct- | ance
(micra-
mhos
at 25°C) | | 4120 | 1170 | 1450 | 1000 | 1430 | 1070 | 1250 | 521 | 089 | 079 | 709 | 579 | 575 | 265 | 661 | | | | | Tem
in °F | Date
sampled | | 9-62 | 9-62 | 5-13-63 | 9-62 | 5-8-63 | 9-62 | 5-8-63 | 9-62 | 5-7-63 | 9-62 | 5-7-63 | 9-62 | 5-7-63 | 9-62 | 5-9-63 | | | | State well | number and other number | NDBGN | 4S/1W-33E1 | 4S/1W-33G3 | | 4S/1W-33K1 | | 45/1W-34Q4 | | 4S/1W-34R2 | | 4S/1W-35P3 | | 4s/2w-3Rl | | 4 S/2W-10C1 | | | | | | Owner and use | | J. Pianetta
irrigation | Enrico and Sodini
irrigation | | R. Clarkes
domestic and | irrigation | B. Rose
domestic and | irrigation | A.C.W.D.
municipal | | A.C.W.D.
municipal | | Andrada
domestic and | irrigation | Holly Sugar Refinery
industrial | | | | | | Anolyzed
by c | | | 0.505 | DWR | uscs | DWR | DWR | OWR | DWR | DWR | uscs | DWR | DWR | OWR | DWR | DWR | uscs | |-------------------|-------------------------|------------------|--|--|-----------------------|--------|----------------------------|--------------|--|----------------------------|------------|----------------------|--------------------------|------------|-------------------------|-----------------------|--|----------------------------|----------------------------| | - | - | - | O E dd | | 293 01 | 0 | 881 U | 0 | ۵ | - | ω | | 213 U | | - | | | | 1750 U | | | Hordness | 20 20 | Total | | 382 | | 000 | | | | | | 470 | | | | | | 1820 | | | à | sod- | Ē | | 53 | | 23 | | | | | | 30 | | | | | | 24 | | | Totol | solved cent | | | 1170 | | 1870 | | | | | | 884 | | | | | | 3170 | | | | Silico | | | ABS 0.0 | | ABS 0.0 | | | | | | A8S 0.0 | | | | | | | | | | Silico | (SiO ₂ | | 22 | | 21 | | | | | | 22 | | | | | | 23 | | | ign | Baran | <u>@</u> | | 0.2 | | 0,6 | | | | | | 0.4 | | | | | | 0.4 | | m.lilior | E B | Fluo- | (£) | | 0,2 | | 0.2 | | | | | | 0.02 | | | | | | 0.2 | | parts per million | equivalents per million | ź | (NO ₃) | | 2.4 | | 15 | | | 0.18 | 16 | 0.08 | 184 | 97 | 44 | 0.03 | 53 | 39 | 8.8 | | | equivo | Chlo- | (CG) | 3 | 495 | 451 | 562 | 501 | 308 | 39 | 45 | 45 | 3.16 | 3.19 | 184 | 45 | 98 | 68 | 36,39 | | | e . | Sul- | (80, | 9) (Cont | 53 | | 364 | | | | | | 102 | | | | | | 9.24 | | | Mineral constituents | Bicar- | (K) (CO ₃) (HCO ₃) | LEY (2- | 108 | | 145 | | | | | | 314 | | | | | | 1.44 | | | eral co | orbon- | (00) | KA VA | 00.00 | | 00.00 | | | | | | 0,00 | | | | | | 0.00 | | | 2 | Potos - C | (X) | VIA CLA | 3.6 | | 3.3 | | | | | | 0,04 | | | | | | 4.4 | | | | Sodium | (NO) | BAY ARLA OF SAVTA CLARA VALLEY (2-9) (Gott.) | 204 | | 137 | | | | | | 60*5 | | | | | | 268 | | | | Magne - | (Ca) \$10m | E BAY AR | 34 | | 138 | |
		54						211				Colcium	(Co)	EAST	4.84		8.73						96*7						380				표			7.8		7.9						7.9						7.7			Specific conduct-	(micro-	at 25°C)		1810	1820	2480	2680	2280	755	823	775	1290	1430	1450	617	1130	893	7250				Temp In °F																					sompled			9-62	5-7-63	9-62	5-7-63	5-7-63	5-7-63	5-7-63	5-10-63	9-62	5-7-63	5-7-63	5-17-63	5-10-63	5-14-63	10-2-62			State well	other number		NDBGN	4S/2W-10N6		45/2W-10Q2		45/2N-10Q3	45/2W-11A2	48/2W-11G1	4s/2v-11J1	4s/2w-11qs		4S/2W-11R12	4S/2W-12C1	4S/2W-12N4	4S/2W-12P2	4S/2W-14E1				Owner and	0.50		A.c.W.D. municipal		Scutto Bros. irrigation	and domestic	H. Andrade domestic and irrigation	J. C. Whipple abandoned	Kitayama	M. Faria domestic	H. Dutra domestic and	irrigation	J. Coularte domestic	A.C.W.O. municipal	H. Faria domestic and irrigation	M. S. Santos irrigation	T. E. Harvey irrigation			2000	by c		OWR	USGS	OWR	uses	DWR	DWR	OWR	OWR	OWR	OWR	DWR	usgs	OWR	USGS	nses	DWR		-------------------	-------------------------	---	----------------------------------	--------------	-------------------------	--------------	------------------------------	------------	--------------------	---------	-------------------------------	---------	-------------------------------	---------	------------------------	--------	--	---------------------------	------------			Hordness os CoCO	N.C.			65		7		42		0		51		31		66	36								189		148		162		76		224		161		191	250				Per	og 5			31		37		31		67		25		31		2.9	22				Total dis-	solved solids mdd ui			326		276		297		366		356		272		344	361					(SiO ₂) Other constituents ^d			25		24 ABS 0.0		29 ABS 0.0		35		23 A8S 0.0		23		20	22			١,	-	on Silic			0.4		0.2		0,34		0.37		0.37		0.2		0.3	0.2			lion	e lo	le (B)			0.3		0.2		0.1		0.03		0.2		0.2		0.07	0.02			ports per million	equivolents per million	rrote ride (NO ₃) (F)			0.10		0.18 0.		9.2 0.		0.02		5.8 0.09		0.16		6.0	6.3			pod	equivol	Chlo- ride (Ci)	(;	967	50	52	28	28	40	40	26 0.73	23	48	55	32	31	74	32	35		!		Sul - fote (SO ₄)	SANTA CLARA VALLEY (2-9) (Cont.)		57		44 0.92		52 1,08		40		55		47		53	20 1.04				Minerol Constituents	Sign of bonate (K) (CO ₃) (HCO ₃)	TIEN (C		145		178		147		251		3.46		159		118	3.72				10.10	orte (CO ₃)	ARA V		0.23		0.00		0000		5		0.00		0000		0.10	17 0.57				2	Stum (K)	NTA G		2.1		2.1		2.8		0.04		0.02		0.04		2.2	0.04					Sodium (Na)	REA OF S		39		41		35		91		34		34		36	32					Mogna- sium (Mg)	EAST BAY		25 2.08		1.41		18		5.8		13		21		27	20					Colcium (Co)	5		34		31		35		28		3,39		30		32	3.34					H			8.3		80		0.1		8.5		1.8				8°.3	8.6			Spacufic	conduct-	(micro- mhos ot 25°C)		4100	544	772	7.58	280	E67	089	998	544	595	704	957	621	155	58()	626			į	G e																				Date	sompled		5-13-63	9-62	5-7-63	9-62	5-7-63	9-62	5-10-63	9-62	5-13-63	9-62	5-13-63	9-62	5-7-63	9-62	9-62	5-8-63			State well	other number	MOBGM	4S/2N-14E1	48/2W-14J1		4S/2W-15C1		4S/2W-15L4		4S/2W-22P2		4S/2W-23F2		4S/2W-2404		4S/2W-24J1	4S/2W-24L6					Owner and		T. F. Harvey	A. Caeton irrigation	and domestic	T. P. Harvey dymestic and	irrigation	King irrigation		W. D. Patterson irrigation		Patterson Ranch irrigation		L. Croce irrigation		J. A., Jr. and L. A. Macado irrigation	N. Kitani domestic and	irrigation			Analyzed	by c		DWR	DWR	DWR	DWR	uses	DWR	DWR	DWR	nses	DWR	DWR	nscs	DWR	USGS	DWR		-------------------	----------------------------------	---	---	------------------------------	------------	---	-------------------------	--------------------	--------	---------------------------	--------------	-------------------------	--------------	--	-----------------------------	--------------	-----------------------------	--------			Hardness as CaCO ₃	N.C Edd		193				0		417		0		106	7		182				Hard os Co	Tatal		371				59		637		119		477	278		380				e de	S S		27				81		32		61		33	37		37				dis-			592				364		1030		360		792	482		194					Silica (SiO ₂) Other canstituents ^d		ABS 0.0				7 ABS 0.0		01		ABS 0.0		el.	26		25 ABS 0.0			١,	- 1			0,40				3 27		1 20		0,2		0,46 23	0,3		0.2			uo	E -	Boran (B)						0,3		1 2.1										parts per million	equivalents per millian	- PEC (9 0.01				0.2		0.2		0.3		0.02	0.2		9 0.01			arts p	alents	trate (NO ₃)		5.8				20 0.32		0.02		0,18		0.2	23		5.3				vinbe	Q 000	nt.)	193	201	30	3.72	20	20	422	451	28	980	226	2.23	78	265	8.32		.5		Sul - fate (SO ₄)	o) (6-	54				39		116		29		37 0.77	49		28			1000	n suc	Bicar- bonate (HCO ₃)	TIPEX (3	217 3.56				269		269		253		453	312		3.97				D.	ate (CO ₃)	ARA V	00.00				10		0.00		19		0,00	9		00.00			1		Patas-Carbon- sium ate (K) (CO ₃) (ANTA C	2.4				1.8		3.0		0.05		2.4	3.2		6.9					Sodium (Na)	REA OF SANTA CLARA VALLEY (2-9) (Cont.)	64 2.78				117		139		3.92		108	3.31		106					Calcium Magne- (Ca) (Mg)	EAST BAY A	27				0.38		60 4.95		9.4		3.94	33		3.31					Caleium (Ca)	3	104				15 0.75		156		32		112	57		86				7	2		8.0				7.8		8.0		80		7.9	8.5		8.2			Spacific	conduct	(micra- mhas at 25° C)		1020	1120	586	916	571	589	1850	1930	557	3400	1410	840	910	1260	1360			Temp	in ° F																			Date	sampled		9-62	5-13-63	5-8-63	5-9-63	9-62	5-7-63	9-62	5-9-63	9-62	5-8-63	5-9-63	9-62	5-8-63	9-62	5-8-63			State well number and	other number	MDBGM	4S/2W-26A1		4S/2W-27L1	4S/2W-35L2	5S/1W-4D1		5S/1W-601		5S/1W-6G1		58/1W-9J1	5s/lw-9Kl		58/1W-9M1					esn nave		H. H. and W. D. Patterson	irrigation	H. H. and W. D. Patterson domestic and irrigation	E. Milani industrial	A.C.W.D. municipal		J. F. Trindade irrigation	and domestic	L. Milani irrigation	and domestic	Alameda County East Bay Title Insurance Co.	A. F. Brosius irrigation	and domestic	W. B. Brinker irrigation		TABLE E-1	Γ		P																			--------	-------------------------	------------------	--	--	-------------	------------	---	------------------------	--------	------------	-----------------------------	----	--------------------------	------------	--	--	---	---------------------	----------------------------				Analyzed			DWR	DWR	DWR	DWR	DWR	DWR			DWR	DWR	DWR	DWR	DWR	DWR	DVR			dness	as CaCO 3	P.C.				-	0		0			0	0	0	0	20	. 85	0					Tatai					20		69			142	146	170	221	245	599	70			à	cent Cent	Ê					96		83			54	88	39	33	33	0.7	70			Totol	pevips pevips						276		510			355	097	336	380	442	1375	278		l ,			(SiO ₂) Other constituents					ABS 0.0															Silico	(SiO ₂)					28		18			16	25	22	22	22	17	14			ion	Boron	(8)					0.24		0.38			0,2	0.4	0,2	0.2	0.2	0.4	0.2		11111	er mil	Fluo-	şe.					0.2		0.1			0.1	0,1	0.1	0.1	0.01	0.1	0,1		1	valents per million		(NO ₃)					0.00		0.2			0.0	26	0.00	0.0	0.00	0.0	0.0			equivalents per million	96	ride (CI)	্র	72 2.03	0.76	0.51	15	2.17	3,86		.1	21 0.57	48	23	1.37	52	631	16			fs in		fote (SO ₄)	9) (Cont			·	24		24	OF SANTA CLARA VALLEY (2-9)		51	65	35	34 0.70	63	134	0,35			Mineral constituents	Bicor-	banote (HCO ₃)	LEY (2-				3.41		276	RA VAL		253	3.63	3.80	266	3.90	101	3.54			erol co	-uarbon-	ate (CO ₃)	RA VA				0.13		0.00	TA CL		9.0	12 0.40	9.0	0.14	0.60	00.00	9.0			Min	Patos-C	sium ate (K) (CO ₃)	NTA CIA				0.9		6.3	OF SAN		0.7	0.03	0,03	0.03	0.03	2.5	0.02				Codium	(Na)	BAY AREA OF SANTA CLARA VALLEY (2-9) (Cont.)	
	92		172	RAV ARFA		3.40	95	50 2.17	51 2.20	55	210	3.25				Magne -	(Mg)	BAY AR				0.00		12 1.02	HUIDS		15	24 2.04	19	2,30	30	85	5.7				- Land	(Co)	EAST				8.0		7.3			32	18	1,85	42 2.11	48	126	19				F						8.5		8.1			8.4	8.6	8.5	°°	8.6	7.9	8.6			Specific conduct-	ance	mhas ot 25°C)		976	668	570	433	738	606			260	099	200	009	079	2100	077				Temp In °F											99	99	71	67	67	86					Dote			5-9-63	5-9-63	5-13-63	9-62	5-8-63	11-30-62			8-20-62	8-30-62	8-22-62	8-20-62	8-20-62	7-26-62	8-62			State well	other number		MDBGM	5S/1W-15C1	5S/1W-17A1	5S/2W-1Bl	5S/2W-1N1		5s/2w-21L1			6S/1E-7C1	6S/1E-21G1	65/1E-30M1	65/14-1181	6S/IW-14E1	6S/1W-16A1	65/14-1741				Owner and	950		Roland, Jr.	. G. & E.	2. Encisco domestic and livestock	Vest Vaco Chemical Co.					Jinsor Bros. domestic	Wrigley	M. Muchado irrigation and domestic	J. S. Garcia irrigation and domestic	A. French irrigation and domestic	R. T. Collier Corp.	C. W. Dunton irrigation			Anolyzed	by c		DWR DWR.	DWR	DWR				----------------------	----------------------------------	---	-------------------------	----------------------------	------------	--	----------------------	------------	------------	--	------------	--	---	------------------------------	--	---	--			Hordness os CoCO ₃	· · · · ·		0	17	0	0	0	100	0	0	24	ω	73	11					Hord os C	Totol		119	170	211	135	185	265	226	146	289	235	250	166					Cent	ğ E		47	26	29	87	38	21	36	41	27	18	23	28						solids solids in ppm		274	290	316	342	340	398	700	310	977	314	707	290						(SiO ₂) Other constituents ^d																			(Si0 ₂)		21	31	50	22	22	28	24	25	28	24	24	22					Lion	Boron (B)		0.2	0.2	0.2	0.3	0.2	0.1	24	0.2	0.1	0.1	0.2	0.2				noillion Poillion	e Big	Fluo- ride (F)		0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.01				parts per million	equivolents per million	frote (NO ₃)		2.9	5.0	3.9	0.00	0.00	14	37	0.0	45	0.24	0.30	0.19					ednivo	Chia- ride (CI)	ont.)	11	16	22 0.63	21	23	43	43	21 0.57	45	23	52	0,57					ri S	Sul - fore (SO ₄)	2-9) (Ont.)	21 0.45	46.0	22 0.46	19	31 0.65	1.89	0.31	28	23	0.28	52	33					Mineral constituents	Bicor- bonote (HCO ₃)	VALLEY	3.35	3.06	262	255	281	3,30	296	3.57	324	253	3.55	3.10					eroi c	ofe (CO ₃)	CLARA	6.0	0.00	12	16	00.00	00.00	00.00	3.6	00.00	0,40	00.00	0.00					ž –	Potas-Corbon- sium ate (K) (CO ₃)	SANTA	0.02	0.03	0.9	0,31	0.03	0.03	0.03	0.8	0.03	0.7	1.5	0.03						Sodium (No)	SOUTH BAY AREA OF SANTA	49	28	40	2.80	2,25	33	58 2,52	2.05	49	24	35	30						Mogne- sium (Mg)	TH BAY	7.7	13	21	12 1,00	1,35	30	27 2.22	171	2.36	2,10	24	17						Calcium Magne- (Ca) (Mg)	8	35	46	51 2 53	34	47	37	46	30	3,42	32 2.61	61 3.03	38					-	F.		8,5	8.2	9.6	8,6	8.2	8.2	8.1	4.8	8.2	8.6	8.0	8.2					Specific conduct- once	(micro- mhas at 25°C)		400	430	550	530	520	009	630	095	720	200	580	077					Temp	Ē			67	99	70	7.2	69	7.0	11	99	70	89	11					Dofe	peldwos		8-62	7-25-62	7-26-62	8-27-62	7-27-62	7-27-62	8-27-62	8-24-62	8-27-62	8-28-62	7-26-62	7-26-62	4				State well number and	other number	MDBGM	6S/1W-26D1	6S/1W-28R1	6S/1W-29C1	6S/2W-9H1	6S/2W-9K2	6S/2W-16R1	65/2W-20N1	6S/2W-24M3	6S/2W-2902	6S/2W-34M1	6S/2W-36H2	7S/1W-5P1						Owner and		T. A. Wilcox irrigation	Sam Weston	G. H. Fukumoto domestic and irrigation	Rezentes domestic	J. Josquin	F. Ormonde	California Water Service Company municipal	Homm 8ros.	Slonaker irrigation and domestic	H. Mantelli irrigation and domestic	0. P. Gluhaich irrigatíon	W. S. Bennet domestic and irrigation			TABLE E-1			Analyzed by c		NAR.	OWR	uscs	DWR	uses	DWR	DWR	DWR	DWR	OWR	DWR	uses	DWR	DWR	DWR		---	-------------------------	---	------------	------------------	--	--------------------------	--------------------------	--------------------------------	----------------------------	---	---------------------	-----------------------------	----------------------------	---	---	---------------	---------------------	--------------------			s s			m	078	0	31	65	163	0	0	0	0	0	79	0	0	1249			Hardness	as CaC Total ppm		145	020	232	270	304	471	39	180	961	327	319	269	383	389	1210 1		ľ	à	E SO		63	70 1	89	79	36	20	80	38	7.4	52	777	22	53	51	37 1			Total	eolved solids on ppm		728	0407	2680	1450	249	619	429	337	849	767	650	376	943	861	2830				Silica Other constituented		ABS 0.0	ABS 0.4		ABS 0.0	ABS 0.0	ABS 0.0 PC4 0.20 (Totsl	ABS 0.0 PO ₄ 0.08 (Total)		ANS 0.0 PO4 0.08 (Total)	ABS 0.0	ABS 0.0 PO ₄ 0.39 (Total)	ABS 0.0			ABS 0.0				Silica (SiO ₂)		29	27	8.7	22	14	27	128	21	27	26	27	21	29	2.5	30			Lion	Baron (B)		0,3	36	36	6.5	0.2	0.20	0,47	0,34	1.6	1.6	0,39	0.3	2.7	2.8	3.4			equivalents per million	Ni- frate ride (NO ₃) (F)		0.02	3.5 1.0	11 1.5 0.18 0.08	22 0,35 0,06	3.1 0.6	8.1 0.13 0.02	4.8 0.3 0.08 0.02	0.0 0.0	12 0.5 0.19 0.03	28 0.5 0.45 0.03	0.02 0.01	0.18 0.03	30 0.3	31 0.4	26 0,42 0,00			par	Chlo- ride (CI)		168	2250	1140	640	92	93	55	20	181	160	102	68	178 5.02	172	31.03			o i	Sul - fate (SO ₄)		12 0.25	34	105	78	111 2.31	3,10	29	39	68	72	50	56 1.17	85	88	503			nstifuent	Bicar- banate (HCO ₃)	(2-10)	173	3.60	8.10	289	286	375	277	280	524 8.59	442	7.44	3.34	9.18	473	318			Minarol constituents	Patas-Carbon- sium ate (K) (CO ₃)	DRE VALLEY	0.06 0.00	0.07 0.00	0.07 3.20	0.04 1	0.04 3	0.5 0	0.02 0.00	2.3 0.06 0.00	0.04 0.00	0.04 5	0,05 0,00	1.8 0.05 0.47	0.05 0.00	2.1 0.05 0.57	0.08 0.00				Sodium Sodium (No.)	LIVERMORE	118 5.13	1100 47.85 0	920 2	480 20.88 0	3.44	54 2.35 0	137 1	51 2.22 0	258 1	163 1 7.09 0	114 1	36 1	202 8,79 0	186 8.09	412 3				Mogne - S.		17 1	3.12 47	3,44 4(48 3,94 20	40	4.07	0.23	1,56	26 1	42	26 2.18	54	63	5.03	248 1				Calcium (Ca)		30	346	1,20	1,45	56	5.34 7	0,55	41 2.04	35	3.09	84	18 0,90 7	50 2.50	55 2.74	9.73		Ì		F			8.1	6.8	4.8	8.3	6.3	8.3	7.9	8.3	4.	8.1	8.7	8,3	5.8	0.8			Specific conduct-	ance (mlcra- mhas at 25° C)		856	9029	4500	2640	920	1040	674	561	1440	1270	1070	999	1550	1440	7220				Temp In • F		99				62	59		89	89			63							Date sampled		6-21-63	6-24-63	6-24-63	6-24-63	6-21-63	3-6-63	2-28-63	2-28-63	2-28-63	6-21-63	2-26-63	6-21-63	7-3-62	6-24-63	6-24-63			State well	nymber and other number	MDBGM	2S/IW-22Al	2S/2E-27Kl	2S/2E-35C1	2S/2E-35G2	3S/1W-1G1	38/1W-12G2	3S/1E-1F1	3S/1E-1K1	3S/1E-1M1	3S/1E-3Q1	3S/1E-7E2	3S/1E-8H3	3S/1E-9A1		3S/1E-9D1				Owner and		T. P. Bishop Co.	City of Livermore industrial and stock	Henry Garaventa stock	F, Gustanich domestic	E. B. and J. Nevin domestic	R. M. Wing abandoned	Mrs. Berwick	L. Lupton	Inman School	Alsmeda County domestic	Volk-McLain	U. S. Air Force domestic and irrigation	Silva Bros,		Rose Brothers																					-		-			-------------------------------------	-------------------------	---------	------------	--------------------------------------	-----	----------------------------	-------------------	--------------------	---	----------------------	--	--------------	--	---------------------------------------	--------------	-------------------------------	---	--------------------------------------	-------	---	--------	------------------			State wall		, ·	Spacific					Minsrol	Minsral canstituents	lushts in	1	parts per million squivalents per million	parts per millian valents per mill	III ion																																																																																																																																																																																																																																																																																																																																																																
	Tatal		Hardne	90			Owner and	number and ather number	Sampled	Tange of F	ance (mlcra- mhos at 25° C)	Ŧ.	Calcium Magne (Ca) (Mg)		Sadium Pot (Na)	Potas-Carbon- sium ate (K) (CO ₃) (on-Bicar- bonate	or- Sul- fore 53) (SO ₄)	Obio (CI)	d- frate (NO ₃)	fe rids 3) (F)	Boran (8)	Silica (SiO ₂)	Silica (SiO ₂) Other canstituents ^d	solved solved solved in ppm	E G G	as CaCO ₃ Tatal N.C. ppm ppm		Analyzed by c			MDB62M						LIV	LIVERMORE V	VALIEY (2-10)	(2-10)	(Cont.)													Neilson	3S/1E-9L1	6-24-63		1410	8.1	81 81 4.04 7.1	87 7.19 3.	89 2.	2.5 0.06 0.00	00 7.00	7 00 1.89	9 5,56	21 56 0.34	34 0.01	1.6	23		831	26	562 2	212 D	DWR		R. Kause domestic	3S/1E-10E2	2-27-63		1160	0.8	99 66	65 5.37 2.	2,39 0.	0.08 0.00	496	66 1.37	100 2.82		27 0.44 0.01		20	ABS 0.0 PO ₄ 0.03 (Tatal)	800	19	516 1	109 D	DWR		Jamiesan irrigatian	35/1E-11E1	6-24-63		966	8,3	20 8	85 5.99	50 2.18 0.	0.06 0.0	0.00 279	9 51 57 1.06	148 4,18		19 0.2 0.31 0.01	0.7	26	ABS 0.0	551	21	1 000	171 17	DWR		Ed Hageman domestic and	38/1Е-11Н1	2-27-63	62	687	8.3	2,10 3,4	3,83	29 1.26 0.	0.04 0.0	0.00	297 39 4.87 0.81	1.32		0.31 0.00	0,42	2 24	ABS 0.0 PO4 0.07 (Total)	195	17	297	53 D	DWR		irrigation		6-21-63		777	8.2	2.50 4.	54 3	30 1.30 0.	0.04 0.0	0.00 305	5 42 00 0.87	74 2.09		0.31 0.02	0.29	24	ABS 0.0	797	16	348	86	DWR		Ed Hageman abandoned	3S/1E-11Н3	3-6-63	59	1680	8.0	81 9	93 13	139 2.	0.07 0.0	0 527	8.64 0.42	312 8.80		0.3 0.2	1:0	28	ABS 1.0 PO ₄ 0.10 (Total)	985	34	1 286	154 0	DWR		A. H. Hageman drainage	3S/1E-1281	3-7-63	67	1610	8.3	60 2.99 6.88		166 2.7	2.6 0.07 0.00	00 7.82	7 25 82 0.52	319 9.00	0.01	0.01	0,1	130	ABS 1.3 PO ₄ 0.09 (Total)	806	7 77	494 1	103 D	DWR		A. H. Hageman	3S/1E-12C2	2-27-63	52	1440	8.2	24 56		220 9.57 2.	0.06 0.00	544 8.92	4 92 31 0.64	204 5.75	1.3	0.00	3.0	3.4	A8S 0.0 PO4 0.01 (Total)	978	62	289	0	DWR		City of Livermore domestic	3S/1E-12H1	2-28-63		751	8,3	2,34 4,	53 3	30 1.30	0,04 0,00	334	4 38 0.79	9 55	15 0.24	5 24 0.00	0,43	3 26	ABS 0.0 PO ₄ 0.11 (Total)	534	91	337	63 D	DWR		H. Johnsan	3S/1E-12M1	3-7-63	99	1550	8,3	4,44	113 9.29 2.	60 2.61 0.	0.54 0.0	0.00 498	8 16 16 1,16	6 7.39		12 0.2 0.19 0.01	0.70	25	A8S 0.1	921	15	687 2	279 D	DWR		H. Jahnsan	3S/1E-12P1	2-28-63	69	280	8.2	35 47	3.48 0.	22 0,96 0.	0.04 0.0	0.00 282	2 62 31 0.64	23		17 0.1 0.27 0.00	0.32	2 24		373	15	262	31	DWR		California Rock & Gravel Co.	3S/1E-13P2	6-21-63		2967	8,1	3.09	0.77 2.	2.26 0.	0.04	0.00 3.46	1 21 21 1.06	47 1.32		0.03 0.30	0,32	20	A8S 0.0	358	37	193	20 D	DWR		H. J. Kaiser Ind.	3S/1E-15L1	6-21-63	99	516	7.8	3.59	11 2	24 1.04	0.03	0.00 3.6	220 3.60 0.81	34 0.96		8.4 0.14 0.01	0.26	21	ABS 0,0°	284	19	224	0 77	DWR		H. C. Bush	3S/1E-16Al	3-6-63	61	683	8.0	62 3,09 3,1	3,06	29 2. 1,26 0.	0.06 0.0	0 316	316 5.18 1.04	36 1.02		0,12 0.0	1 0,31	118	ABS 0.0 PO4 0.0 (Total)	007	17	308	67	DVR		M. Kruse irrigation	38/1E-17H2	6-21-63		860	7.9	5.84	17 1.41	39 2,	0.03	0.00 28%	282 4.62 67	103		0.19 0.00	0.46	9 52	ABS 0.0	424	61	363	132	DWR		Pleasanton Twp. W. D. irrigation	3S/1E-17Rl	6-25-63		426	8.5	23 2.	2,01	1.22 0.	0.04 0.	0.20 2.4	150 43 2.46 0.90		26 6.	0.11 0.05	5 0,1	21	A8S 0.0	247	28	158	25	uses				pez a															_			-------------------	-------------------------	---	----------------	---	---	--------------------	---	---	---	--	---	---	--	---	----------------------	---------------	-----------------------------	--				Anolyzed by c		DWR	DWR	OWR	DWR	DWR	OWR	DWR	DWR	DWR	nscs	USGS	DWR	DWR	uses	USGS			Hardness	N.C.		77	98	78	0	0	68	0	35	134	28	210	134	97	69	30				1 1		305	522	572	999	563	401	394	572	553	260	522	777	867	344	265		-	à	sod-		22	32	34	35	34	47	9 7 6	37	31	28	51	18	30	14	27			Tata	solved solids in ppm		809	813	076	897	856	1010	768	958	1030	392	1300	557	896	416	907				Silica (SiO ₂) Other constituents ^d		ABS 0.0 PO ₄ 0.04 (Total)	A8S 0.0 PO ₄ 0.15 (Total)	ABS 0.0	ABS 0.00 PO ₄ 0.00 (Total	ABS 0.4 PO ₄ 0.02 (Total)	ABS 0.0 PO ₄ 0.26 (Total)	ABS 0.00 PO ₄ 0.01 (Total)	ABS 0.1 PO ₄ 0.01 (Total)	ABS 0.0 PO ₄ 0.03 (Total)	ABS 0.0	ABS 0.0	ABS 0.00		ABS 0.0	ABS 0.0				Silica (SiO ₂)		23	25	22	118	16	21	8.9	27	26	21	32	26	27	22	18			lian	Baren (B)		0.19	0,64	0.84	0.9	0.89	0.64	0.8	0,72	3.8	0.4	5.0	0.60	0.95	0.2	0.5		parts per millian	equivalents per millian	Flug- ride (F)		0.2	0.2	0.2	0.3	0.6	0.4	0.2	0,3	0.2	0.2	0.03	0.00	0.1	0.2	0.0		orts pe	lents	rate (NO ₃)		41	76	88	0.4	0,16	102	0,27	64	0.03	28	0.03	28	0,19	27	28			equive	Chio- ride (Ci)		34 0.96	151 4.26	5.05	3.86	3.47	203	158	188	193	52	250	2.96	201	40	52 1.47			Mineral constituents in	Sul- fate (SO ₄)	1.)	76	70	75	55	59	71 1.48	14 0.29	70	108	34 0.71	907	56 1.16	42 0.87	41 0.85	33				Bicar- banate (HCO ₃)	(2-10) (Cont.)	285	<u>532</u> <u>8,72</u>	603 9.88	760	724	381	605 9.92	655	\$111 8.38	247	356	354	489	300	4.05				Carbon- ate (CO ₃)	EY (2-	0.00	0,00	0.00	0,00	00.00	00.00	0.00	0.00	00.00	18	0,20	00.00	0,00	20 0.67	0.67			W	Potas- sium (K)	E VALLEY	0.0	0.06	0.05	0.6	0.6	0.03	7.5	0.04	3.4	0.04	0.05	0.06	2.9	0.05	0.04				Sadium (Na)	LIVERMORE	40 1.74	116	137	139	133	166	158	158 6.87	1114	46	250	43	1114	26	45				Magne- s.um (Mg)		31	5.99	86	85	82 6.71	51	6.47	7.14	65	43	104	64	95	56.4.63	3.60				Calcium (Ca)		71	89	88	67	91	3.79	28	86	114	34	37	3,19	43	45	34				Ħ		7.4	7.9	7.8	7.6	7.7	7.6	8.2	7.9	8.0		8,5	7.9	7.7	8 8	80			Specific conduct-	ance (micra- mhas at 25°C)		750	1400	1610	1530	1480	1490	1360	1650	1500	129	2000	951	1520	702	681				Temp in °F		55	19	65			62		19	62			29							sampled		2-26-63	3-5-63	3-5-63	9-5-62	3-4-63	2-26-63	9-5-62	3-5-63	2-26-63	6-24-63	6-24-63	3-7-63	3-15-63	6-24-63	6-24-63			State well	other number	MDB6M	3S/1E-18M3	3S/1E-20J1	3S/1E-20Q1	3S/1E-20Q2		3S/1E-29A2	3S/1E-29B1		3S/1E-32K2	3S/2E-4H1	3S/2E-4M1	3S/2E-6P1	3S/2E-7CI	3S/2E-7K1	38/2Е-ВН1				Owner and use		R. H. Dana	City of Pleasanton	City of Pleasanton	City of Pleasanton abandoned		Albert Vomini domestic	City of Pleasanton abandoned		Mrs. Cohen	California Mater Service municipal	J. Schenone domestic and irrigation	Gandolfo domestic	H. R. Johnson	H. L. Hageman irrigation	California Water Service Co. municipal	TABLE E-1 ANALYSES OF GROUND WATER		Analyzed by c	Τ						--	---	-------	---------------------------------	-------------------------------------	--------------------------	---						OWR	DWR	DARR		guess	as CoCO ₃	2		35	69	0		ğ	Totol	a l		248	298	9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			dis- cent solved sod- colids tum	+-		431 35	9 26	© 0		Tot		1		643	697	656			tifuents								Silico Other constituents ^d			A8S 0.0	A8S 0.0	0.0			Silico (SiO ₂)			81	22	<u>8</u>		lion	Boran (B)			<u> </u>	0.4			million ser mil	Fluo- ride (F)			0.4	0.2	0.00		volents per million	rote (NO.)			29	22	0, 02		ports per million equivolents per million	- old - old - old			74	98.1	0 1.19		č.	Sul - fate		3	96.0	63	2) 0.09 06		Mineral constituents in	Potas-Carbon- Bicar- sium ote banate	16031	(O)	260	279	6.23 6.23		o lorer	Carbon	15 22	-Z (2-	0.00	0,00	0.63		ž	Potas - sium		E VALL	0.05	0.05	0.00 0.06			Sadium (No)		LIVERMORE VALLEY (2-10) (Cont.)	62 2,70	49	11.72																																																																																																																																																																																																																																																																																																																																																																																																																														
Magne -
s:um
(Mo) | | | 12 | 36 | 3) (6) | | | Colcium Magne- | | | 3,94 | 60. | 1.70 | | 0.2 | 표 | | | 8.3 | 8.3 | 9. | | Specific | ance
(micra-
mhos | 0123 | | 773 | 784 | 0191 | | | Te or | | | | | | | | Dote
sompled | | | 6-25-63 | 6-24-63 | 6-25-63 | | Stote wall | number and other number | | ND86M | 3S/2E-10H1 | 3S/2E-29D1 | 38/38-1901 | | | Owner and | | | Amling-DeVare Nursery
irrigation | B. G. Wood
irrigation | irrigation | TABLE E-1 ANALYSES OF GROUND WATER 1963 | | | Analyzed
by c | | | | DWR | TT | DWR | 77 | DWR | 11 | DWR | 11 | DWR | 77 | DWR | LL | DWR | 11 | DWR | |---|-------------------------|---|---------|-------------|---------------|-------------------------------|------------|------------------------------|---------|-------------------------------|-------------------|------------------------------|-------------------|--------------------------|-------------------|--------------------------|---------|------------|--------------------|------------------------------| | | Hardness | E 03 | | | | | 67 | | 0 | | 11 | | 82 | | 0 | | 11 | | 0 | | | | | | Edd | | | | 282 | | 175 | | 165 | | 131 | | 188 | | 216 | | 167 | | | F | å | Sod- | 1 | | | | 24 | | 22 | | 22 | | 31 | | 36 | | 21 | | 32 | | | | Tofol | solved
solids
in ppm | | | | | 787 | | 258 | | 282 | | 250 | | 322 | | 314 | | 286 | | | | | (SiO ₂) Other constituents ^d | 21 | | 32 | | 33 | | 29 | | 19 | | 29 | | 22 | | | | lion | Boran
(B) | | | | | 0,1 | | 1:0 | | 0,1 | | 0.1 | | 0.1 | | 0.1 | | 0,1 | | | | er mil | Fluo-
ride
(F) | | | | | 0,4 | | 0.2 | | 0.2 | | 0.1 | | 0.1 | | 0.2 | | $\frac{0,1}{0,01}$ | | | | valents per millon | trofe | 2 | | | | 0000 | | 3.0 | | 5.0 | | 67 | | 0.00 | | 31 | | 00.00 | | | | equivalents per million | - old
- old | (5) | | | 54 | 55 | 20 | 16 | 24
0,68 | 20 | 52 | 39 | 25 | 30 | 0.62 | 21 | 0.48 | 14 | 0.48 | | | in s | Sul -
fote | - 1 | 3 | | | 49 | | 24 | | 19 | | 26 | | 32 0,66 | | 24 | | 42 | | | | Mineral constituents | Bicor-
bonote | (HCO 3) | REGION (No. | (3-2) | | 275 | | 3,38 | | 3.08 | | 96.0 | | 259 | | 3,90 | | 3.67 | | | | eral co | ote | 2,5 | RECIO | TTEX | | 4.2 | | 3.0 | | 00.00 | | 00.00 | | 6.0 | | 6.0 | | 00.00 | | | | M | Potas-Carbon-
sium ote | à | COASTAL | PAJARO VALLEY | | 1.5 | | 2.4 | | 0.04 | | 0.5 | | 13 | | 3.6 | | 5.5 | | | | | Sodium
(No) | | CENTRAL | PA | 1.74 | 40 | 22
0,96 | 23 | 21 0.91 | 22
0,95 | 33 | $\frac{27}{1.17}$ | 44 | 50 | $\frac{27}{1.17}$ | 1.20 | 34 | 37 | 0.96 | | | | Calcium Magne - | À | | | | 24 | | 20 | | 19.1 | | 1.57 | | 30 | | 30 2,50 | | 21
1,70 | | | | | Calcium
(Ca) | | | | | 3.68 | | 37 | | $\frac{34}{1,70}$ | | 21 1.06 | | $\frac{22}{1.11}$ | | 36 | | 33 | | | | | Ŧ | | | | | 8,3 | | 8,3 | | 7.6 | | 7.9 | | 8.4 | | 8.4 | | 8.2 | | | | Spacific
conduct- | (mlcra-
mhas | of 25 C | | | 169 | 680 | 420 | 450 | 423 | 410 | 357 | 380 | 582 | 260 | 202 | 511 | 997 | 067 | 765 | | | | Tamp
in °F | | | | | | | | | | | | | | | | | | 63 | | | | sampled | | | | 9-6-62 | 5-21-63 | 9-5-62 | 5-21-63 | 9-5-62 | 5-21-63 | n_5-62 | 5-22-63 | 9-5-62 | 5-22-63 | 9-5-62 | 5-21-63 | 9-5-62 | 5-22-63 | 9-5-62 | | | State well | ather number | | | MDBGM | 11S/2E-27A1 | | 12S/1E-11L1 | | 12S/1E-11N1 | | 12S/1E-14J1 | | 12S/1E-23R1 | | 12S/1E-24G1 | | 12S/1E-24Q | | 12S/2E-7K1 | | | | Owner and | | | | S. H. Gandrup
domestic and | irrigation | Frank T. Blake
irrigation | | Sunset Beach Park
domestic | | J. Roacha, Jr.
irrigation | | E. L. Padden
domestic | | H, Trafton
irrigation | | domestic | | A. L. Waugaman
irrigation | | | CO ₃ Analyzed
N.C. by c | | DWR | DWR | 4 LL | 2 DWR | 129 DWR | 7728 DWR | 93 DWR | DWR | 64 DWR | 204 DWR | | 60 DWR | | | | |--|---|---------|----------------------|-----------------------------------|--------------|-----------------------------|---|--|---|-------------|----------------------|----------------------------|----------------------------|-------------|------------|--------------------------|--| | Horde | os CaCO ₃ Tatal N.C. | | | | 183 | 227 | 281 | 7800 7 | 226 | | 128 | 382 | | 227 | 227 | 227 | 227 | | | E Sod | | | | 23 | 25 | 22 | 5.97 | 31 | | 777 | 27 | | 2.5 | | | | | Totol | salved
solids
in ppm | | | | 290 | 374 | 430 | 10020 | 707 | | 308 | 588 | 788 | | 8 | 286 | 786 | | | (SiO ₂) Other constituents ^d | | | | | | | | | | | | | | | | | | | Silica
(SiO ₂) | | | | 27 | 36 | 28 | 16 | 27 | | 38 | 27 | 33 | | | 23 | | | Tian | Baron
(B) | | | | 0.1 | 0.2 | 0.2 | 0.1 | 0.1 | | 0.1 | 0.2 | 0.1 | | | 0.1 | 0.1 | | er millo | Flug- | | | | 0.2 | 0.1 | 0.2 | 0.01 | 0.1 | | 0.1 | 0.1 | 0.1 | | | 0.01 | | | parts per million
equivolents per millian | rote
(NO ₃) | | | | 00.00 | 0.0 | 0.00 | 0.0 | 0.88 | | 99.00 | 0,18 | 3.2 | | | 46 | 46 0.74 | | a Ninge | 음:
- 일:
- (고) | | 72 2.03 | 0.39 | 12 0.32 | 25 | 101 | 5452
153.75 | 09 | 44 | 72 2.03 | 184
5.20 | 55
1,55 | | 1.92 | 68
1.92
74
2.08 | 68
1.92
74
2.08
85
2.40 | | ē | Sul -
fate
(SO ₄) | ~ | | | 38 | 38 | 58 | 506 | 67 | | 0,36 | 69 | 54 | | | 3.8 | 3.8 | | Mineral constituents | Bicar-
bonate
(HCO ₃) | (Cont.) | | | 3.43 | 275 | 3.03 | 88 | 156 | | 1.27 | 3.56 | 181 2.97 | | | 69 | | | neral c | Carbon-
ote
(CO 3) | ү (3-2) | | | 4.5 | 0,00 | 00.00 | 0.00 | 0.10 | | 0.00 | 00*0 | 10.8 | | | 0,00 | | | 2 | Potas-Carbon-
stum ote
(K) (CO ₃) | VALLEY | | | 0.05 | 0.06 | 2.6 | 0.19 | 2.1 | | 0.05 | 3.0 | 2.3 | | | 0.03 | 0.03 | | | Sodium
(Na) | PAJARO | 66 | 24 | 26 | 35 | 37 | 9.80 | 47 | 41 | 47 | 65 2.83 | 35 | 87 | 2.09 | 2.09 | 2.09
56
2.43
84
3.65 | | | Magne sum
(Mg) | | | | 1.20 | 30 | 3,32 | 1161 | 33 2.68 | | 1.25 | 4.00 | 31 2.55 | | | 0.91 | 0.91 | | | Calcium
(Ca) | | | | 49 | 42 2.10 | 46 2.30 | 1212 | 37 | | 26 | 73 | 1.99 | | | 17 | | | 0 . | ¥ . 0 | | | | 7.8 | 8 2 | 8.2 | 7.4 | 8,3 | | 8.0 | 7.5 | 8.4 | | _ | 7.5 | | | Specific | once
(micro-
mhas | | 1260 | 777 | 430 | 530 | 700 | 13500 | 650 | 692 | 567 | 1020 | 610 | 481 | _ | 450 | | | | Te and | | 62 | | | 67 | 67 | | 19 | | 19 | 68 | 09 | | | | 09 | | | Oate | | 9-5-62 | 9-5-62 | 5-22-63 | 9-5-62 | 9-5-62 | 7-23-62 | 7-23-62 | 9-5-62 | 7-23-62 | 7-24-62 | 7-24-62 | 9-5-62 | | 5-22-63 | 5-22-63 | | etoto. | nymber and ather number | MDB68M | 12S/2E-12E1 | 12S/2E-18K2 | | 12S/2E-1981 | 12S/2E-19M1 | 12S/2E-30E1 | 12S/2E-30N1 | 12S/2E-31A1 | 12S/2E-31C1 | 12S/2E-31K1 | 12S/2E-32C1 | 12S/2E-32K1 | | | 128/36-781 | | | bra rena
esu | | Sheehy
irrigation | City of
Watsonville
industrial | and domestic | T. E. Trafton
irrigation | M. Williamson
domestic and
irrigation | E. Yappert
irrigation
and domestic | J. Fenaglio
domestic and
irrigation | Ranger | Jensen
irrigation | F. Tornavaca
irrigation | S. H. Cowell
irrigation | Johnson | Ittabatton | 11 + KG C + CO | irrigation
L. Sanovac | TABLE E-1 | | pez | \Box | | | | | | | | | | | | | | | | | |--|------------|--|---------------|-------|---|-------------------------|--------------------------------------|---|------------|----------------------------|-----------------------------------|-------------|------------------------|------------------------------|--------------------------|----------------------------|--|---| | | Analyzed | | | | DWR 77 | DAR | | DWR | DWR | DWR | DWR | | dness | os CaCO 3 | P.C. | | | 11 | 58 | 312 | 0 | 190 | 00 | | 0 | 71 | | 16 | 28 | 22 | 97 | | | | Total | | | 93 | 125 | 492 | 72 | 438 | 370 | | 62 | 278 | | 165 | 190 | 178 | 184 | | à | Sod - | ē Ē | | | 8 7 | 63 | 27 | 4.5 | 31 | 57 | | 88 | 28 | | , 26 | 77 | 87 | 10 | | Total | solved | - 1 | | | 233 | 288 | 832 | 194 | 810 | 792 | | 999 | 597 | | 265 | 258 | 252 | 260 | | | | (SiO ₂) Other constituents | | | | | | | | | | | | | | | | | | | Salico | (2015) | | | 77 | 36 | 27 | 31 | 31 | 97 | | 24 | 35 | | 24 | 52 | 138 | 38 | | lion | Boron | (e) | | | 0.0 | 0.0 | 0.2 | 0:0 | 0.1 | 0.2 | | 0.1 | 0.3 | | 0.21 | 0,26 | 0.15 | 0.03 | | millar
er mil | Fluo- | (F) | | | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 0.2 | 0.1 | | 0.2 | 0.2 | 0.2 | 0.3 | | parts per millian
equivalents per million | | frate
(NO ₃) | | | 0.14 | 36 | 8.2 | 0,29 | 59 | 20 | | 0,00 | 0.00 | | 20 0.32 | 13 | 28 | 0.42 | | pointe | -916 | (C) | | | 58 | 2.03 | 8,15 | 28 | 3,00 | 262 | 148 | 202 | 86 | | 23 | 14 | 20 | 0,68 | | 25
E | | (SO ₄) | | 4 | 3.8 | 16 | 1.61 | 0.04 | 3.90 | 112 | | 88 | 54 | ୍ଷା | 23 | 24 | 0.25 | 21 0.44 | | Mineral constituents | Bicor- | bonate
(HCO ₃) | (Cont.) | | 100 | 81 | 3,26 | 1.43 | 285 | 3.23 | | 196 | 3.85 | CILROY-HOLLISTER BASIN (3-3) | 182 | 198 | 3,11 | 169 | | eral c | arbon | ote
(CO ₃) | (3-2) | | 00.00 | 00.00 | 10.2 | 00.00 | 9.0 | 0.00 | | 7.2 | 0.30 | TER BA | 0.00 | 00.00 | 00.00 | 0.00 | | M. | Potos - | (K) (CO ₃) | PATARO VALLEY | | 0.8 | 0.05 | 3.2 | 0.9 | 3.9 | 3.0 | | 4.5 | 3.9 | HOLL13 | 0.05 | 0.02 | 0.0 | 0.3 | | | 1 | (Na) | PA 1ARO | | 39 | 1.90 | 3,70 | 28 | 91 3.95 | 138 | 192 | 225
9,80 | 51
2,20 | CILROY | 27 | 14 0.61 | 18 | 0.70 | | | Magne- | Sium
(Mg) | | | 0.90 | 12
0.98 | 63
5,15 | 10 | 56 | 3.87 | | 5.2 | 3,03 | | 23 | 26
2.10 | 16 | 16 | | | 1 | (Ca) | | | 19 | 30 | 69.7 | 0.59 | 83 | 3,53 | | 16 | 51 2.53 | | 28 | 34 | 44 | 47 | | | ¥ | | | | 8.1 | 8.0 | 7.7 | 0.8 | 7.8 | 8.2 | | 8,5 | 0.0 | | 8,2 | 7.9 |
 | 8.0 | | Specific | ance | mhas
at 25°C) | | | 350 | 597 | 1320 | 260 | 1100 | 1300 | 166 | 1150 | 740 | | 555 | 675 | 907 | 426 | | | Temp | | | | 65 | 99 | 63 | 79 | 63 | 79 | | | 67 | | | | | | | | Dote | | | | 7-30-62 | 7-30-62 | 7-23-62 | 7-31-62 | 8-15-62 | 7-24-62 | 9-5-62 | 5-22-63 | 8-15-62 | | 6-27-63 | 6-27-63 | 6-27-63 | 6-27-63 | | State well | number and | | N. Garage | 10000 | 128/3E-19M1 | 125/3E-30A1 | 135/16-141 | 135/26-111 | 13S/2E-5M1 | 135/2E-6E2 | 13S/2E-6P1 | | 13S/2E-6R1 | | 9S/3E-25N3 | 105/3E-1E2 | 108/38-23J1 | 108/3Ľ-26J1 | | | Owner and | 980 | | | C. McGinnis
domestic and
irrigation | H. Fukuba
irrigation | Hurley
irrigation and
domestic | M. Vaughn
domestic and
irrigation | irrigation | G. H. Hurley
irrigation | F. Capurro & Sons
domestic and | irrigation | Giberson
irrigation | | T. Andrade
irrigation | P. L. Hudson
irrigation | J. Orlando
irrigation
and domestic | E. H. Henderson
domestic and
arragation | | | N.C. by c | | | O DWR | | | | | | | | | | | | | |--|--|---------------|----------------------|--|-----------------|--------------|--|---|--|--|---|---|--|--|---|---| | Hardness | Tota! | | | 294 | | | | | | | 294
194
205
284
361
304
792 | 294
194
194
361
361
253
282
253 |
294
194
195
195
195
197
197
197
197
197
197
197
197
197
197 | 294
194
194
208
284
304
253
377
777
777 | 294
194
194
195
208
285
253
304
777
777
777
776 | 294
194
194
195
196
197
197
197
197
197
197
197
197
197
197 | | ď | P S E | | | 7 28 | | | | | | | | | | | | | | 2 : | perios psic | | | 427 | 427 | 427 | 427 | 427 2 88 2 300 738 7486 | 427 427 438 4466 466 466 | 427
268
300
438
412
412
335 | 427
2 68
4 438
4 466
4 466
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | 427
268
300
438
412
412
412
11370 | 427
2 68
4 438
4 438
4 412
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 427
268
200
438
438
466
412
11370
11370 | 427
268
200
300
446
412
412
1130
1130
1150 | 427
268
200
300
466
466
412
1130
1130
1150 | | | Silica Other constituents ^d | | | 28 | 3 E8 | 31 gg [58] | 13 13 158
10 13 158 | 82 81 F) O) 83 | 55 [30]31 [38 [58 | 83 83 11 03 83 83
11 12 05 83 81 | 7 | 52 53 30 31 38
53 58 30 31 38 | 11 18 18 18 18 18 18 18 18 18 18 18 18 1 | 23 28 30 11 38 83 83 83 83 83 83 83 83 83 83 83 83 | 23 28 29 20 21 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20 | 29 20 11 18 25 28 30 07 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29 | | | Boron Silis
(B) (Sid | | | 0,23 28 | | | | | | | | | | | | | | Ni- Fluo- B
frate ride | | | _ | 3.6 0.3 | | | | | | 0.03
0.02
0.01
0.03
0.03
0.03
0.01
0.01
0.01 | 0.03
0.02
0.02
0.01
0.03
0.03
0.02
0.01
0.01
0.01
0.01 | 0.03
0.02
0.03
0.03
0.03
0.03
0.03
0.03 | 0.3
0.02
0.02
0.03
0.03
0.03
0.03
0.03
0 | 0.02 0.02 0.02 0.03 0.00 0.00 0.00 0.00 | 0.0.2 2.0.0 | 0.0.2 | | Chio-
ride
(CI) | | | 45 3.0 | _ | | | | | | | | | | | | | | or- Sul-
1016 fate
103) (SO ₄) | | (3-3) (Cont.) | 19 | _ | | | | | | | | | | | | | | Corbon- Bicar-
ate banate
(CO ₃) (HCO ₃) | | BASIN (3-3) | | | 0 210 0.00 3.44 | | | | | | | | | - | | | | Potos-(K) | | STER | 15 | | 0.02 | | | | | | | | | | | | | (No) | | GIL ROY-HOLLE | 53 | 0,74 | | 31 1.35 | | · | *P | · | | | - | | | 1- | | Colcium sium
(Ca) (Mg) | | | 43 46 | 41 22
2.04 1.84 | _ | 1.35 2.81 | | · | | | | | | | | | | ¥ | | | 8.3 4. | 8.1 4. | _ | 8.3 | | | | | | | | | | | | in °F (micra-
mhos | C2 10 | | 735 | 442 | 513 | | | | | | | | | | | | | peldmos | | | 6-27-63 | 6-27-63 | 6-27-63 | | 6-27-63 | 6-27-63 | 6-27-63 | 6-27-63
6-27-63
6-27-63
6-27-63
6-28-63 | 6-27-63
6-27-63
6-27-63
6-28-63
6-28-63 | 6-27-63
6-27-63
6-27-63
6-28-63
6-27-63 | 6-27-63
6-27-63
6-27-63
6-28-63
6-27-63
6-27-63 | 6-27-63
6-27-63
6-28-63
6-27-63
6-27-63
6-27-63 | 6-27-63
6-27-63
6-27-63
6-27-63
6-27-63
6-28-63
6-27-63 | 6-27-63
6-27-63
6-28-63
6-28-63
6-28-63
6-28-63 | | other number | | MDRAM | 10S/4E-17F1 | 10S/4E-18G2 | 10S/4E-28D2 | | 108/4E-34L5 | 10s/4E-34L5 | 108/4E-34L5
118/4E-4Q3
115/4E-2182 | 105/4E-34L5
115/4E-4q3
115/4E-2182
115/5E-2781 | 108/4E-34L5
118/4E-4Q3
118/4E-2182
118/5E-27M1 | 105/4E-34L5
115/4E-443
115/4E-2182
115/5E-27M1
125/4E-34P2 | 105/4E-3415
115/4E-4q3
115/4E-2182
115/4E-37N1
125/4E-35C1
125/4E-35C1 | 105/4E-34L5
115/4E-443
115/4E-2182
115/4E-3781
125/4E-35C1
125/4E-36C1
125/5E-982 | 115/4E-2443
115/4E-443
115/4E-2182
115/4E-3781
125/4E-35G1
125/5E-9NZ
125/5E-9NZ | 115/4E-2443
115/4E-2182
115/4E-3781
125/4E-3641
125/5E-982
125/5E-982
125/5E-3641 | | | Owner and | | Vowinkel
damestic | E. Nichols
domestic and
irrigation | D. Wolfe | and damestic | integration and domestic S. Armendariz irrigation and domestic | irrigation and domestic firrigation and domestic firrigation and irrigation firrigation | and domestic S. Armendaria Intigation and domestic G. Hotang Mrs. J. D. Fair | intigation
and demestic
firigation
and demestic
G. Mosang
irrigation
Mrs. J. D. Pair
domestic
Mrs. C. R. Lamit i
Admestic | attigation attigation attigation and dumestic irrigation Mrs. J. D. Fair domestic Mrs. J. D. Pair formstic Arrigation Irrigation Irrigation Irrigation Mrs. C. R. Lanit i domestic Forty Warse Seed Go. | intigation intigation intigation and domestic firtigation Mrs. J. D. Fair domestic Mrs. C. R. Laniti domestic Ferry Mrse Seed Co. irrigation irrigation | artidgation artidgation artidgation artidgation artidgation Mrs. J. D. Fair domestic Mrs. C. R. Lantit domestic ferry Mrse Seed Co. frigation artidgation domestic frigation domestic frigation domestic domestic domestic domestic Mr Diaz domestic | ail damestic S. Armendariz S. Armendariz C. Hosang His. J. D. Fair domestic Mrs. C. R. Lamin i domestic Ferry Morse Seed Co. Irrigation Olympia School demestic Amestic Mr Diaz domestic domestic Holaz domestic Holaz domestic Holaz domestic Holaz domestic Holaz Holaz domestic | aid demostic S. Armendaliz Trigation and demostic C. Hosang His. J. D. Fair domestic His. C. R. Lamini domestic Ferry Morse Seed Co. Irilgation Olympia School demostic demostic M. Diaz demostic demostic Jirilgation S. Freitas & Puttado domestic domestic H. Diaz domestic H. Diaz domestic domestic Irilgation Irilgation Irilgation H. Tigation Irilgation | all demonstic S. Armendaris Trigation and demonstic C. Hossang Trigation Hrs. J. D. Fair domestic Hrs. C. R. Lamini domestic Ferry Morse Seed Co. Irilgation Olympia School demonstic Admestic H. Diaz Comestic H. Diaz Comestic H. Diaz Comestic H. Diaz Comestic H. Diaz H. Diaz Comestic H. Diaz | TABLE E-1 ANALYSES OF GROUND WATER | - | | | | | | | | | | | | | | | | | | |-------------------|-------------------------|--|--------------
--|--------------------------------|---|--|------------------------|----------------------|-------------|-------------|---|------------------------|---|--------------------------|--|---| | | | Anolyzed
by c | | £ | ń | - | DER | DICK | | DWR | DWR | DWR | DWR | OWR | MAR | DWR | DWR | | - | | | | | | | 170 | 129 | | 11 | 58 | D D | С | 0 | 112 | 169 | 76 | | | Hordness | Total | | 9 | 6117 | 342 | 475 | 987 | | 63 | 125 | 62 | 611 | 25 | 291 | 306 | 241 | | | ě | Sod in | | ŝ | 7 | 73 | 38 | 41 | | 90 7 | 43 | 8 5 | 67 | 55 | | ž, | 97 | | | Total | solved sod- | | | 068 | 1390 | 606 | 855 | | 228 | 296 | 588 | 296 | 178 | 610 | 798 | 564 | | | | Silica Other constituents ^d | | | | | | | | | | | | | | | | | | | Silica
(SiO ₂) | | | 07 | 10 | 21 | 24 | | 777 | 36 | 77 | 42 | 977 | 36 | 88 | 37 | | | lon | Boron
(B) | | | 61 | 3.4 |] | 1,00 | | 0,0 | 0.0 | 0.2 | 0,1 | 0.1 | 0.2 | 0.2 | 0.1 | | million | e. Bi | Fluo-
ride
(F) | | | 0.00 | 0.00 | 0.4 | 0.4 | | 0.2 | 0.1 | 0.0 | 0.01 | 0.2 | 0.1 | 0.1 | 0.01 | | parte per million | equivolents per million | trote
(NO ₃) | | | 0.0 | 0.00 | 0.14 | 0.24 | | 8.5 | 36 | 0.9 | 0.0 | 0.03 | 3.1 | 0.03 | 0.9 | | 1 | odninbe | Chio-
ride
(CI) | | | 324 | 13.82 | 3.61 | 3.10 | | 58 1.63 | 72 2.03 | 2.70 | 60 | 38 | 223
6.30 | 362 | 5.20 | | | ts in | Sul -
fote
(SO _a) | ont.) | | 0.0 | 2.33 | 5.54 | -5.22 | | 3.8 | 0.35 | 1.81 | 5.3 | 2.9 | 31 | 37 | 26 | | | Mineral constituents | Bicor-
bonote
(HCO.) | 3-3) (Cont.) | | 366 | 8.29 | 372 | 374 | (3-4) | 100 | 1,33 | 3.70 | 163 | 67 | 3.58 | 162 | 3.16 | | | nerol cc | Polos-Carbon- | BASIN | | 0.00 | 14 0.47 | 00.00 | 00.00 | SALINAS VALLEY (3-4) | 0,00 | 00.00 | 9.0 | 0.20 | 0.00 | 0.00 | 3.0 | 4.2 | | | N | Potos-
sium
(K) | TSTUE | | 2.3 | 0.06 | 2.8 | 3.0 | LINAS V | 0.8 | 1.8 | 3,5 | 0.04 | 0.0 | 5.7 | 8.3 | 2.8 | | | | Sodium
(No) | HOLLI STUR | | 266 | 425 | 135 | 141 6.13 | SA | 39 | 44 | 170 | 54 2.33 | 30 | 110 | 7.55 | 96 4.17 | | | | Mogne - | | 1 | 0.54 | 19 | 4.05 | 45 | | 0,90 | 12 0.98 | 4.6 | 1.15 | 6.8 | 34 | 36 | 25 2.06 | | | | Calcium
(Co) | | | 3.64 | 105
5.24 | 109 | 100 | | 19 | 30 | 0,85 | 25 | 9.4 | 3.06 | 3.12 | 2.76 | | | | Ŧ | | | 7.9 | 8.5 | 7.8 | 7.9 | | | 8.0 | 8.5 | 7,00 | 7.9 | 7.7 | 8.3 | 8.4 | | | Specific
conduct- | once
(micro-
mhos | | | 1540 | 2410 | 1430 | 1380 | | 350 | 465 | 820 | 7460 | 237 | 1090 | 1350 | 885 | | - | 3, 0 | Temp
n of | | | | | | | | | 89 | 72 | 72 | 71 | 89 | 99 | 99 | | | | Dote | | | 6-28-63 | 6-28-63 | 6-27-63 | 6-28-63 | | 7-30-62 | 7-30-62 | 7-16-62 | 7-31-62 | 7-31-62 | 8-6-62 | 7-16-62 | 7-16-62 | | | Store well | other number | | ADDRESS OF THE PROPERTY | 125/6E-1912 | 128/65-3181 | 138/56-351 | 138/5E-11G1 | | 12S/3E-19M1 | 12S/3E-30A1 | 13S/2E-7R1 | 13S/2E-10J1 | 13S/2E-13N1 | 13S/2E-16E1 | 13S/2E-17H1 | 13S/2E-19R1 | | | | Owner ond | | | E. F. Broadfoot & Jon domestic | C. T. Pillsbury
domestic and
irrigation | First Presbyterian
Church
domestic | V. Lompo
irrigation | | | | Monterey Bay Salt Co.
domestic and
industrial | R. Bowen
irrigation | R. M. Cheek
domestic and
irrigation | M. Minhoto
irrigation | Delfino & Calcagno
irri;ation
and domestic | T. Leonardini
domestic and
irrigation | Analyzed | o do | | DWR | DWR | DWR | DWR | DWR | DWR | OWR | DWR | DWR | OWR | OWR | DWR | DWR | OWR | |----------------------|----------------------|--|----------------------|---------------------------------------|--------------------------|---------------------------|--------------------------|--------------------------|-------------|-------------------------------|-----------------------------|---|---|---|--|---------------------|-----------------------| | | _ | D E da | | | 0 | 0 | 26 DV | 222 | 0 | 0 00 | 63 04 | 82 | 7 | 0 | 96 | 262 D | 0 66 | | | as CoCO ₃ | Tata! N | | 315 222 | 136 | 114 | 176 2 | 315 22 | 115 | 154 | 901 | 280 | 73 | 99 | 201 | 300 | 129 | | | Cent | 1 . | | 42 31 | 58 13 | 58 11 | 55 17 | 39 31 | 53 11 | 41 15 | 57 10 | 29 28 | 25 | 52 | 288 | 47 3 | 45 | | 1 | dis- | spilos
spilos | | 869 | 422 | 348 | 518 | 642 | 288 | 332 | 334 | 767 | 230 | 186 | 336 | 720 | 290 | | | | (SiO ₂) Other constituented | | | | | | | | | | | | | | | | | | 3 | (SiO ₂) | | 673 | 37 | 29 | 31 | 33 | 33 | 31 | 33 | 34 | 777 | 37 | 77 | 29 | 23 | | إ | 1 9 | Boron
(B) | | 0.1 | 0.2 | 0,1 | 0.2 | 0.2 | 0.1 | 0,1 | 0.1 | 0.1 | 0.2 | 0.0 | 0.0 | 0.1 | 0.1 | | million | -01 | şê. | | 0.01 | 0.1 | 0.1 | 0,1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | | parts per million | Ž | trate
(NO ₃) | | 0.0 | 0.02 | 0.02 | 0.0 | 0.02 | 0.9 | 0.4 | 0.9 | 8.5 | 9.8 | 3.2 | 0.04 | 3.35 | 77 | | ports per million | | - 8 (i) | | 264 | 3,45 | 60 | 162 | 229 | 73 | 53 | 60 | 2,30 | 1,30 | 43 | 3.50 | 145 | 84 | | 5 | 1.0 | fote
(SO ₄) | 7 | 68 | 21 0.45 | 11 0.22 | 19 0.41 | 51 | 14
0,29 | 12 0.24 | 22 0.47 | 74 | 3.4 | 0.10 | 0.28 | 73 | 20 | | Mineral constituents | Bross | ate banote
(CO ₃) (HCO ₃) | VALLEY (3-4) (Cont.) | 113 | 170
2,80 | 3.52 | 3,00 | 114 | 149 | 3.25 | 167 | 3,65 | 87 | 86 | 82 | 46 | 37 | | eral co | Too Hoo | ofe
(CO ₃) | У (3-6 | 0.00 | 3.0 | 9.0 | 00.00 | 00.00 | 3.0 | 6.0 | 3.6 | 9.0 | 00.00 | 00.00 | 0.00 | 00.00 | 0 00 | | ž | | Sicm (K) | VALLE | 0.06 | 2.8 | 2.4 | 2.7 | 3.2 | 2.7 | 2,3 | 2.4 | 0.07 | 0.03 | 0.7 | 0.03 | 0.0 | 1.9 | | | | Sodium
(No) | SALINAS | 105 | 3,87 | 3.30 | 103 | 95 | 62 2.70 | 51 2.20 | 67 | 53 | 37 | 34 | 3,00 | 103 | 67 | | | No. | S'UM) | | 3,05 | 16 | 1.15 | 19 | 3.31 | 16 | 0.22 | 11 0.88 | 22
1.82 | 9.5 | 0.50 | 15 | 35 | 1 28 | | | | Calcium
(Ca) | | 65
3.24 | 30 | 22 | 38 | 60 2.99 | 19 0.97 | 58 | 24 | 3.79 | 0,72 | 0.82 | 19 0.94 | 3,20 | 26 | | | 품 | | | 8.1 | 6.3 | 5.0 | 8.2 | 8.2 | 7, 0 | 8.5 | 7.8 | 8.4 | 8.0 | 7.9 | 7.9 | 7.0 | 7.0 | | Specific | conduct | (micro-
mhas
at 25°C) | | 1130 | 685 | 545 | 800 | 980 | 200 | 495 | 067 | 735 | 320 | 285 | 570 | 1060 | 200 | | | Temp | | | 89 | 70 | 29 | 70 | 72 | 72 | 99 | 70 | 99 | 69 | 79 | 79 | 62 | 09 | | | Date | sampled | | 7-16-62 | 7-16-62 | 7-17-62 | 7-17-62 | 7-17-62 | 7-16-62 | 7-16-62 | 7-17-62 | 7-19-62 | 8-1-62 | 7-26-62 | 7-26-62 | 7-12-62 | 7-12-62 | | | State well | ather number | MDB6M | T. | 13S/2E-3102 | 13S/2E-31K2 | 13S/2E-31M2 | 13S/2E-31N2 | 13S/2E-32A2 | 13S/2E-32Cl | 13S/2E-32N1 | 13S/2E-33R1 | 13S/3E-4L1 | 13S/3E-2082 | 13S/3E-29A1 | 14S/1E-24Q2 | 14S/1E-25K1 | | | 200 | 950 | | J. Tate
Jomestic and
irrigation | J. J. King
irrigation | Molera Estate
domestic | E. Ballone
irrigation | E. Ballone
irrigation | irrigation | O. P. Overhouse
irrigation | Molera Estate
Arrigation | C. Rissotti
irrigation
and domestic | R. Hollenbeck
domestic and
irrigation | F. B. Taganas
domestic and
irrigation | C. Lightfood
domestic and
irrigation | V. Coto
domestic | Marina Del Mar School | TABLE E-1 ANALYSES OF GROUND WATER 1963 | Г | | 2 | | | | | | | | | | | | | | | | | |---|-------------------------
---|---------|---------|--|-------------------------|----------------------------|--|---------------------------|--------------------------|--|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|---|------------------------|------------------------------| | | | Analyzed
by c | | | DWR OWR | DWR | DWR | DWR | DWR | DAR | | | Hordness | N.C. PP | | | 0 | 0 | 0 | 'n | е | 25 | 52 | 252 | 130 | 27 | 186 | 269 | 69 | 777 | | | | | | | 127 | 133 | 142 | 152 | 202 | 195 | 188 | 345 | 238 | 197 | 434 | 429 | 110 | 137 | | | à | sod
mu
lum | | | 54 | 20 | 777 | 35 | 26 | 37 | 37 | 35. | 07 | 36 | 32 | 33 | 20 | 30 | | | Tatol | solved
solved
in ppm | | | 366 | 348 | 304 | 298 | 334 | 384 | 408 | 738 | 512 | 388 | 806 | 828 | 308 | 284 | | | | Silica
(SiO ₂) Other constituents ^d | Silica
(SiO ₂) | | | 35 | 35 | 34 | 136 | 22 | 32 | 티 | 34 | 33 | 29 | 26 | 21 | 28 | 8 | | | lian | Boran
(B) | | | 0.1 | 0,1 | 0.1 | 0.1 | 0.0 | 0.1 | 0,2 | 0.2 | 0.2 | 0.1 | 0,3 | 0.0 | 0.1 | 0,1 | | | Ē | Flua-
ride
(F) | | | 0.1 | 0.1 | 0.2 | 0.01 | 0.01 | 0.1 | 0.1 | 0.01 | 0.1 | 0.1 | 0,1 | 0.01 | 0.1 | 0.01 | | | equivolents per million | rrote
(NO ₃) | - | | 0.02 | 0.02 | 1.3 | 0.03 | 3.6 | 0.00 | 0.4 | 0.00 | 0.00 | 2.2 | 5.3 | 0.00 | 73 | 0.0 | | | equivo | 음.
- 10년
- | | | 1,60 | 51 | 50 | 48 | 41 | 62 | 43 | 190 | 99 | 63 | 162 | 195
5,50 | 69 | 0.48 | | | is in | Sul -
fate
(SO ₄) | | ٧ | 30 | 23 | 0.33 | 0,25 | 0.24 | 48 | 102 | 3,85 | 138 | 417 | 3.25 | 194 | 17 0,36 | 18 1.68 | | | Mineral constituents | Bicor-
banate
(HCO ₃) | (Cant | . 1 | 3.17 | 3,23 | 3,38 | 180 | 3.98 | 3,30 | 148 | 113 | $\frac{132}{2.17}$ | 3.20 | 302 | 3.20 | 55 | 107 | | | erol c | Potas-Carbon-
sium ate
(K) (CO ₃) | 7-67 | | 0.30 | 6.0 | 00.00 | 0.00 | 0.00 | 3.0 | 6.0 | 0.00 | 0000 | 6.0 | 00.00 | 0,00 | 00.00 | 3.0 | | | Min | sium
(K) | 1000 | VALLE | 3.2 | 2.3 | 23 | 2.3 | 1.8 | 3.7 | 3.0 | 0.10 | 0,11 | 2,7 | 3.8 | 4.6 | 0.05 | 0.07 | | | | Sadium
(Na) | CALTMAC | CHATTAG | 3.05 | 63 | 53 | 40 | 33 | 55 | 53
2,30 | 98 | 3,20 | 52 2.25 | 94 | 98 | 53 | 28 | | | | Magne - | | | 10 | 11 | 13 | 22 | 0.56 | 13 | 18 | 35 | 2,18 | 15 | 3,17 | 43 | 13 | 0.59 | | | | Colcium
(Ca) | | | 34 | 34 | 34 | 28 | 3.48 | 56 2.78 | 44 | 3.96 | 52 2.58 | 54 | 5.51 | 5.11 | 23 | 43 | | Ī | | ¥ | | | 8.4 | 8.4 | 7.8 | 8.2 | 8.2 | 8.3 | 4.8 | 8.0 | 8.1 | 8.4 | 7.5 | 8.2 | 7.3 | 8.2 | | | Specific
conduct- | once
(micro-
mhas
of 25° C) | | | 535 | 510 | 200 | 455 | 200 | 585 | 565 | 1055 | 750 | 580 | 1200 | 1180 | 510 | 450 | | | | Temp
in °F | | | 72 | 72 | 72 | 99 | 79 | 99 | 99 | 99 | 70 | 89 | 64 | 99 | 63 | 70 | | | | Sampled | | | 7-17-62 | 7-17-62 | 8-7-62 | 7-19-62 | 7-19-62 | 7-18-62 | 7-18-62 | 7-18-62 | 8-7-62 | 7-19-62 | 7-12-62 | 7-18-62 | 7-12-62 | 8-7-62 | | | Stote well | number and other number | RABAN | MUBoan | 14S/2E-6Q1 | 14S/2E-6R2 | 14S/2E-8M2 | 14S/2E-11Dl | 14S/2E-12Q1 | 14S/2E-14N1 | 14S/2E-15L1 | 14S/2E-18D1 | 145/2E-23J1 | 145/2E-24E1 | 14S/2E-25B1 | 145/2E-26A1 | 14S/2E-30P2 | 14S/2E-35Q1 | | | | Owner and use | | | Mrs. L. Martin
irrigation
and domestic | E. Struve
irrigation | J. Jefferson
irrigation | J. P. Rogers
domestic and
irrigation | E. C. Eaton
irrigation | L. A. Wilder
domestic | Nonterey County Bank
irrigation
and domestic | J. G. Armstrong Co.
irrigation | A. H. Bordges
irrigation | M. T. DeSerpa
irrigation | M. T. DeSerpa
irrigation | M. Bordgers
irrigation and
domestic | A. Coodall
domestic | D. P. McFadden
irrigation | | | | Analyzed | | | | | | | | | | | | | | | | | | |---|-------------------------|-------------|--|--------------|-------------------------|----------------------------|-------------------------|--------------------------|----------------------|----------------------|----------------------------|------------------------|------------|------------|---|-----------------------------------|--------------------------|---------------------|---| | - | | _ | | | DWR O DWR | DWR | DWR | | 1 | rdness | os CoCO s | D E |
 | 362 | 205 | 9 | 67 | 0 | 87 | 37 | 165 | 69 | 428 | 332 | 202 | | 0 12 | 97 | | - | | | Toto! |
 | 32 742 | 617 77 | 35 212 | 44 202 | 64 38 | 59 92 | 163 | 27 417 | 40 169 | 50 557 | 27 450 | 23 357 | 43 262 | 53 130 | 36 271 | | ŀ | -6 | tolved cent | \$ E | | 1314 33 | 926 | 426 3 | 7 78 7 | 132 6 | 300 | 296 | 744 2 | 378 4 | 1508 5 | 650 2 | 610 2 | 7 767 | 366 | 474 3 | | - | | | - 1 |
 | 13 | 6 | - 4 | 7 | 1 | е | - 2 | 7 | en . | 15 | 9 | | | en . | 7 | | | | | (SiO ₂) Other constituents |
 | 24 | 27 | 38 | 135 | 81 | 티 | 128 | 91 | 28 | RI | - El | 2 26 | 133 | 9 | 0 | | | Hion | | (e) | | 0.4 | 0.3 | | 1,0 | 0.0 | 0,1 | 1.0 | 0.2 | 0,2 | 0.6 | 0.3 | 0.2 | 0,2 | 0,1 | 100 | | | Der m | Fluo | şe. | | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.0 | 0.2 | 0.02 | 0.2 | 0,0 | 0.01 | 0.4 | 0.2 | | | equivolents per million | ż | (NO ₃) | | 8.5 | 0.35 | 3.6 | 8.5 | 0.0 | 33 | 0.9 | 0.00 | 0.9 | 0.00 | 0.00 | 0.02 | 0.0 | 3.6 | 0.00 | | | o in be | 3 | 1 1 1 1 1 1 1 1 1 1 | | 312
8.80 | 257 | 78 | 3.20 | 40 | 103 | 0.37 | 74 | 38 | 243 | 3.65 | 1,85 | 3.25 | 3.10 | 3.50 | | | nts in | | (SO ₄) |
4 | 233 | 3.16 | 58
1,20 | 54 | 3.4 | 14 0.28 | 74 | 208 | 133 | 624 | 302 6.28 | 209 | 30 | 16 | 0,85 | | | Mineral constituents | Bicor | theory) | (Cont.) | 7.60 | 261 | 174 | 165 | 53 | 59 | 150 | 307 | 122 | 157 | 2.35 | 3.10 | 301 | 144 | 244 | | | nerol 4 | Corpor | (CO 3) | VALLEY (3-4) | 0,00 | 0.00 | 6.0 | 0.00 | 00.00 | 00.00 | 0.05 | 00.00 | 00.00 | 0.00 | 0.00 | 00.00 | 12 0.40 | 00.00 | 0,50 | | | ž | 90100 | (K) (CO ₃) | VALLE | 4.3 | 3.8 | 0.07 | 2.8 | 0.03 | 0.06 | 3.0 | 3,3 | 3.7 | 6.5 | 4.3 | 3.9 | 5.2 | 2.2 | 0.07 | | | | | (No) | SALINAS | 157 | 157 | 53 | 3,25 | 32 | 63 | 28 | 3.20 | 54 2.35 | 255 | 3.33 | 2.20 | 92 | 3.05 | 3,40 | | | | Modes | (Mg) | | 3.60 | 55 | 21/11/1 | 1.58 | 0.24 | 10 | 0,83 | 4.03 | 1,56 | 5.79 | 56 | 51 4.24 | 54 4.43 | 13 | 1.34 | | | | | (CO) | | 323 | 3.92 | 50 2.53 | 49 | 0,53 | 20 | 49 | 4.31 | 36 | 5.35 | 4.37 | 2.90 | 160 | 29 | 81 7.08 | | | | 품 | | | 7.4 | 7.9 | 4.8 | 8.2 | 7.2 | 7.5 | 8.3 | 7.9 | | 8.0 | 8.0 | 8.1 | 8.5 | 8.2 | 8,5 | | | Specific | once. | mhos
ot 25° C) | | 1850 | 1420 | 625 | 705 | 226 | 200 | 450 | 1100 | 570 | 2000 | 1100 | 870 | 830 | 009 | 830 | | | | Temp | = | | 99 | 62 |
7.0 | 63 | 72 | 67 | 99 | 99 | 70 | 79 | 89 | 79 | 99 | 67 | 89 | | | | Dote | sompled | | 7-12-62 | 7-12-62 | 7-20-62 | 7-11-62 | 7-11-62 | 7-11-62 | 7-10-62 | 7-9-62 | 8-7-62 | 8-7-62 | 7-20-62 | 8-10-62 | 8-10-62 | 7-25-62 | 7-25-62 | | | Stote well | puo segundo | other number | MDBGM | 145/3E-30E1 | 14S/3E-30F1 | 148/3E-3301 | 155/1E-2201 | 155/1E-2361 | 15S/1E-26N2 | 15S/2E-1A3 | 15S/2E-2Q1 | 15S/3E-4K3 | 158/3E-5Q4 | 155/3E-701 | 15S/3E+16M1 | 15S/3E-17Pl | 16S/2E-1L1 | 16S/2E-3J1 | | | | Owner and | 987 | | A. Lanini
irrigation | and domestic
irrigation | P. C. & E.
municipal | P. Calabrese
domestic | O. Veach
domestic | J. Siino
domestic | irrigation
and domestic | L. Jacks
irrigation | irrigation | irrigation | P. Giottínini
domestic and
lrrigation | Spreckles Sugar Co.
irrigation | J. Violini
irrigation | J. Hugo
domestic | Corral delterra
Country Club
domestic and
irrigation | TABLE E-1 | | Analyzed
by c | | DWR | |--|---|----------------|-------------------------|-----------------------------|--------------------------------|-----------------------|------------|------------------------|--------------------------------|------------------------|------------------------|--------------------------|--------------------------------|--|-------------|-----------------------|-------------------------|---| | 91 | | | 100 | 355 D | 225 D | 11 | 75 D | 243 D | 25 D | 383 D | g 95 | g 866 | 157 D | 184 | 750 I | 1 689 | 253 | | | Hardness | as CaC | | 225 1 | 477 3 | 420 2 | 303 | 185 | 365 2 | 225 | 481 3 | 173 | 1128 9 | 277 1 | 328 1 | 7 286 | 878 | 430 | - | | | sod
rum
T | | 57 2: | 35 4 | 34 4: | 18 | 40 | 38 | 53 2 | 24 4 | 22 1 | 22 11 | 28 2 | 707 | 52 | 80 | 7 77 | _ | | Total | solved
solved
mdd m | | 624 | 1044 | 810 | 450 | 432 | 816 | 632 | 812 | 300 | 2032 | 504 | 732 | 2980 | 2210 | 1096 | | | | Silica Other constituents ^d | Silica
(SiO ₂) | | 777 | 36 | 32 | 27 | 36 | 30 | 26 | 21 | 28 | 28 | 25 | 27 | 23 | 24 | 131 | | | lon | Baran
(B) | | 0.1 | 0.4 | 0,3 | 0.1 | 0.2 | 0.4 | 0.5 | 0,1 | 0.1 | 0.4 | 0,3 | 0.6 | 2.0 | 1.8 | 1.1 | | | million
er mil | Fluo-
ride
(F) | | 0.1 | 0.2 | 0.1 | 0,1 | 0.1 | 0,1 | 0.1 | 0.1 | 0.0 | 0,1 | 0.2 | 0.2 | 0.4 | 0.4 | 0.0 | | | parts per million
equivalents per million | rrate
(NO ₃) | | 6.1 | 57 | 0.00 | 0.0 | 6.4 | 5.8 | 33 | 57 | 3.4 | 37 | 0,18 | 0,60 | 0,38 | 25 | 0,28 | | | DAINDB | Cride
(CI) | | 254 | 3.30 | 74 | 28 | 62 | 94 | 50 | 87 | 13 | 287 | 3.05 | 1,81 | 316 | 7.85 | 144 | | | ē | Sul -
fate
(SO ₄) | ٦ | 34 | 403 | 331 | 125 | 103 | 337 | 222 4.62 | 365 | 69 | 870 | 99 2.06 | 5.89 | 1335 | 1057 | 363 | | | Mineral canstituents | Bicar-
bonate
(HCO ₅) | (Cont. | 152 | 148 | 3,90 | 3.61 | 134 | 149 | 3,40 | 119 | 180 | 159 | 146 | 176 | 260 | 3.08 | 3.55 | | | arai ca | Corbon-
ate
(CO ₃) | (3-4) | 0.00 | 00.00 | 00.00 | 0.24 | 0.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 00.00 | 0.00 | 13 | 3.0 | 00.00 | | | Mine | Potas-C
sium
(K) | VALLEY | 3.3 | 3.5 | 3.9 | 2.2 | 2.9 | 3.1 | 4.2 | 5.6 | 0.00 | 4.4 | 2.0 | 2.7 | 8.5 | 6.7 | 4.5 | | | | Sodium (No) | SALINAS VALLEY | 140 | 122
5,30 | 103 | 30 | 58 | 107 | 120
5,20 | 3.05 | 23 | 149 | 50 2.17 | 102 4.43 | 500 | 360 | 160 | | | | Mogne -
sium
(Mg) | | 22 | 62
5.08 | 56 4.55 | 2.30 | 21 | 51 4.22 | 30 | 45 | 13 | 115 | 35 | 57 4.72 | 5.70 | 130 | 5.25 | | | | Calcium
(Ca) | | 54 | 89 | 3,84 | 3,76 | 40 2.02 | 3,08 | 40 2.02 | 5,97 | 48 | 263 | 53 | 37 | 281 | 125 | 3,34 | | | | Ŧ. | | 7.8 | 8.2 | 8.2 | 8.4 | 8,2 | 8.1 | 7.6 | 7.9 | 8.2 | 8.0 | 8.2 | 8 2 | 4.8 | 8.3 | 7.9 | | | Spacific
conduct- | ance
(micra-
mhas
at 25° C) | | 1060 | 1350 | 1120 | 610 | 620 | 1100 | 930 | 1170 | 077 | 2400 | 760 | 1020 | 3500 | 2900 | 1360 | | | | Temp
in °F | | 73 | 99 | 64 | 79 | 99 | 89 | 99 | 67 | 89 | 99 | 19 | 65 | 99 | 65 | 99 | | | | Sampled | | 7-25-62 | 7-26-62 | 7-27-62 | 7-31-62 | 7-13-62 | 7-31-62 | 8-3-62 | 8-3-62 | 8-3-62 | 8-3-62 | 8-9-62 | 8-8-62 | 8-8-62 | 8-8-62 | 8-8-62 | | | State well | number and
other number | MDBGM | 16S/2E-12G1 | 16S/4E-24A1 | 16S/4E-25Kl | 17S/5E-9Q1 | 175/6E-7Q1 | 17S/6E-27Kl | 18S/6E-1El | 18S/6E-2N1 | 18S/6E-28J1 | 18S/7E-29G1 | 19S/7E-10P1 | 198/7E-1302 | 19S/8E-32A1 | 19S/8E-33R1 | 20S/8E-5R1 | | | | Owner and use | | C. Phillips
domestic | K. R. Nutting
irrigation | J. C. Twisselman
irrigation | C. Doud
irrigation | irrigation | N. Baker
irrigation | L. M. & V. Jacks
irrigation | L. Jacks
irrigation | F. W. Smith irrigation | E. Pincini
irrigation | Salinaa Land Co.
irrigation | D. M. Singaman
domestic and
irrigation | irrigation | G. Ross
irrigation | A. Duarte
irrigation | | ### ANALYSES OF GROUND WATER 1963 | ſ | | P |-----|--|--------------------------------|---------------------|---|----------------------|-------------|-------------|----------------------------|--------------------------|----------------------------|----------------------------|---------------------------|-------------------|--------------|--------------|--------------|--------------|-------------------|--------------|---------------------|------------------------| | | | Analyzed
by c | \rightarrow | | | DWR OWR | | DWR | | | dness | | N.C. | | | 571 | 527 | 726 | 39 | 61 | 104 | 6 | 99 | | | | | | | | 82 | | | | | Total | | | 671 | 674 | 106 | 176 | 198 | 157 | 86 | 248 | 511 | 541 | 257 | 144 | 172 | 332 | | 265 | | | | cent
sad. | 5 | | | 28 | 30 | 32 | 30 | 43 | 50 | 34 | 21 | | | | | | | | 20 | | | Total | eolved | - 1 | | | 2300 | 1328 | 2030 | 336 | 458 | 282 | 206 | 408 | 1075 | 1020 | 780 | 300 | 1060 | 520 | | 097 | | | | 9 | (SiO ₂) | 29 | 32 | 29 | 25 | 34 | 35 | 30 | 36 | 20 | 07 | 47 | 07 | 32 | 9] | | 26 | | | Lion | | <u>@</u> | | | 2.8 | 0.4 | 0,8 | 0.2 | 0.4 | 0.1 | 0.1 | 0.1 | 0.46 | 1.35 | 0.35 | 0,06 | 2.00 | 0.06 | | 0.1 | | | r milla | Fluo | (F) | | | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 9.0 | 0.5 | 0.7 | 0.5 | 1.2 | 0.5 | | 0.02 | | | parts per millian
equivalents per millian | - iz | (NO ₃) | | | 0.04 | 36 | 33 | 2.3 | 4.1 | 0.25 | 0.12 | 0,16 | 5.5 | 0.0 | 15 | 0.16 | 52 0.84 | 0,31 | | 1.8 | | | edning | | (CE) | | | 754 | 158 | 170 | 0.70 | 1.75 | 36 | 0,62 | 38 | 47 | 145 | 68 | 43 | 107
3.02 | 1.95 | | 61 1.72 | | | nts in | | (SO ₄) | - | -1 | 492 | 530 | 812 | 73 | 123 | 1.64 | 14
0,31 | 55 | 469
9.76 | 294
6,12 | 76 | 24 | 354 | 1.00 | | 98 2.04 | | | Mineral constituents | Bicar | (HCO ₃) | | (Cont.) | 122
2.00 | 180 | 3.50 | 160 | 161 2.63 | 1.07 | 116 | 3.85 | 320 | 8.60 | 303 | 176 | 339 | 312 5.11 | | 3.35 | | 200 | Ineral | Carbon | (CO ₃) | | (3-4) | 00.00 | 0,00 | 0,00 | 4.2 | 3.0 | 00.00 | 0.00 | 0.00 | 0,00 | 00.00 | 0.00 | 00.00 | 00.00 | 00.00 | (3-7) | 0.30 | | - | Σ | dium Patas-Carbon-
sium ate | e (x | | VALLEY | 0.29 | 5.7 | 63 | 0.04 | 3.4 | 2.6 | 1.4 | 2.4 | 5
0,13 | 4
0.10 | 3 0.08 | 4 0.10 | 0.05 | 0.08 | ALLEY | 3.6 | | | | | (Na) | | SALINAS VALLEY (3-4) | 445 | 132
5.73 | 195 | 35 | 3,05 | 18 | 24 | 30 | 140 | 180 | 3.48 | 42 | 310 | 40 | CARMEL VALLEY (3-7) | 47 2.05 | | | | Magne | (6M) | | | 63
5.20 | 80 | 61 4.97 | $\frac{21}{1.70}$ | 2.36 | 14 1.15 | 7.2 | $\frac{21}{1.72}$ | 5,18 | 100 | 40 | 10
0,82 | $\frac{21}{1,73}$ | 17 | | 23 | | | | Salcinia | (Ca) | | | 164 | 137 | 262
13,04 | 36 | 32 1.60 | 40 7.00 | 1.37 | 65
3.24 | 101 | 52
2.59 | 37 | 41 2.05 | 34 | 105 | | 3,42 | | | | 돐 | | | | 8.2 | 0.8 | 4.8 | 8.4 | 8.0 | 8 2 | 7.9 | 7.3 | 7.8 | 7.6 | 7.6 | 7.9 | 7.4 | | 8 .5 | | | | Specific | ance | | | | 3200 | 1700 | 2230 | 520 | 700 | 410 | 300 | 009 | 1462 | 1664 | 814 | 478 | 1634 | | 700 | | | | | Temp cor | | | | 70 | 77 | | | 67 | | | | 74 | 99 | 99 | 72 | 74 | | | 63 | | | | Date | | | | 8-8-62 | 8-7-62 | 8-7-62 | 8-7-62 | 8-7-62 | 8-6-62 | 8-6-62 | 8-6-62 | 9-23-63 | 9-24-63 | 9-23-63 | 9-26-63 | 9-26-63 | 9-27-63 | | 8-14-62 | | | Stote well | number and | | | MDBGM | 20S/8E-24J2 | 21S/9E-7Jl | 21S/9E-24Ll | 22S/10E-17N1 | 22S/10E-34G1 | 23S/8E-2E1 | 23S/8E-8K1 | 23S/9E-29Cl | 248/126-1712 | 24S/15E-17F1 | 25S/12E-16N1 | 26S/14E-35D1 | 26S/16E-31B1 | 27S/13E-36R1 | | 168/14-13L1 | | | | Owner and | @ \$3.0 | | | irrigation | irrigation | K. & H. Eade
irrigation | W. C. Glau
irrigation | L. Rosenberg
irrigation | E. Weferling
irrigation | J. Martinus
irrigation | M. Martin, Jr. | | | | | | | | R, Odello
irigation | ### TABLE E-1 ## ANALYSES OF GROUND WATER 1963 | | | Analyzed
by c | | DWR | DWR | DWR | DWR | DWR | OWR | DWR | DWR | |---|-------------------------|---|----------------------------|--|-------------------------|-------------|------------------------|---------------------------------------|-------------|-------------------------|-------------------| | - | 50 | N.C
ppm | | 80 | 123 04 | 32 04 | 96
D | | 10 69 | | 05 | | | ardne | as CaCO ₃ Total N.C | | | | | | 191 | | 187 | | | - | | sod-
num To | | 33 270 | 30 306 | 24 125 | 32 233 | 31 451 | 27 236 | 40 287 | 33 162 | | - | otal | solved s
solids
in ppm | | 208 | 099 | 220 2 | 9446 | 838 | 414 2 | 029 | 324 | | - | - | | | | | - 2 | | | | | | | | | Sitico
(SiO ₂) Other constituents ^d | | | | | | | | | | | | | Sifico
(SiO ₂ | | 26 | 29 | 23 | 33 | 119 | 27 | 131 | 18 | | | II lon | Boron
(B) | | 0.1 | 0.1 | 0.0 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | | | per mi | Flua-
ride
(F) | | 0.4 | 0.2 | 0.2 | 0.4 | 0.1 | 0,1 | 0.6 | 0.02 | | | valents per
million | Ni-
trote
(NO ₃) | | 2.3 | 0.33 | 0.0 | 0.9 | 0.0 | 0.4 | 0.00 | 0.00 | | | equivalents per million | Chla-
ride
(CI) | | 85 | 78 | 0,39 | 58 | 3.75 | 48 | 2.35 | 30
0.85 | | | c s | Sul -
fate
(SO ₄) | | 85
1,76 | 2.65 | 45 | 118 | 3,33 | 85 | 5.15 | 1.66 | | | Mineral constituents | Bicar-
bonate
(HCO ₃) | (Cont.) | 3.70 | 208 | 114 | 165 | 354 | 3.21 | 122 2.00 | 2.25 | | | neral | Carbon-
ate
(CO ₃) | (3-7) | 3.0 | 7.2 | 0.00 | 0,00 | 00.00 | 4.2 | 00.00 | 0.00 | | | ž | Patas-Carbon-
sium ate
(K) (CO ₃) (| /ALLEY | 0.07 | 4.1
0.11 | 2.1 | 2.3 | 3.7 | 3.4 | 3.5 | 0.07 | | | | Sodium
(Na) | CARMEL VALLEY (3-7) (Cont. | 2.80 | 60 | 08.0 | 51
2,20 | 94 | 41 | 3,83 | 1,60 | | | | Mogne -
Sium
(Mg) | | 23 | 23 | 8.6 | 25 2,06 | 1,53 | 19 | 32 2.59 | 1.18 | | | | Colcium
(Ca) | | 3.49 | 83 | 36 | 52 2.61 | 150 | 62
3.12 | 63 | $\frac{42}{2.07}$ | | | | H _d | | 7.8 | 4.8 | 8.2 | 8.1 | 7.7 | 8.4 | 0.8 | | | | Specific
conduct- | ance
(micro-
mhos
at 25° C) | | 735 | 830 | 300 | 099 | 1180 | 610 | 880 | 460 | | | | Temp
in °F | | 62 | 62 | 73 | 71 | 99 | 62 | 99 | 5 9 | | | | Sampled | | 7-11-62 | 8-14-62 | 7-10-62 | 7-10-62 | 7-10-62 | 7-11-62 | 7-10-62 | 7-9-62 | | | State well | number and other number | MDBGM | 16S/1W-13L2 | 16S/1W-13Q2 | 16S/1E-16L1 | 16S/1E-16N1 | 16S/1E-17G1 | 16S/1E-18K1 | 16S/1E-23F1 | 165/1E-2581 | | | | Owner and USe | | Carmel Sewage
Treatment Plant
industrial | 8. Odello
irrigation | | E, Haber
Irrigation | Harbert
trrigation
and domestic | irrigation | R, Martin
irrigation | irrigation | # RADIOASSAY OF GROUND WATER 1963 | | Gross | Activity | | | 0 + 3.8 | 0
0
1 - | 0 + 3.9 | 5.5 ± 3.4 | 0 + 3.8 | 0 + 3.8 | 2.4 + 3.9 | 2.9 + 3.9 | 1.0 + 3.4 | | 0 + 3.9 | 0 + 3.8 | 4.0 + 3.9 | 1.9 ± 4.0 | | |----------------------------|--------------------|----------|-------------------------------|--------------------|-------------|---------------|-----------|------------|------------|------------|------------|------------|------------|--------------------|-----------|------------|------------|------------|--| | in Pica Curies . Per Liter | Activity | Beta | | | | | | | | | | | | | | | | | | | - | Dissolved Activity | Alpha | <u>_</u> ন | | | | | | | | | | | | | | .= | | | | Radioossoy | Activity | Beta | | ALLEY 2-5 | | | | | | | | | | YGNACIO VALLEY 2-6 | | | | | | | | Suspended Activity | Alpha | SAN FRANCISCO BAY REGION (No. | CLAYTON VALLEY 2-5 | | | | | | | | | | YGNACIO V | | | | | | | | 2000 | | SA | | 8-0-62 | 2010 | 8-9-62 | 9-12-62 | 8-9-62 | 8-9-62 | 8-9-62 | 8-9-62 | 9-11-62 | | 8-9-62 | 8-9-62 | 8-9-62 | 8-9-62 | | | | Capiled | 2 | | | 7 11 69 | 70-11-7 | 7-11-62 | 7-10-62 | 7-10-62 | 7-10-62 | 7-10-62 | 7-10-62 | 7-11-62 | | 7-11-62 | 7-11-62 | 7-11-62 | 7-11-62 | | | | Ness | | | | 147 111/111 | TW-MT/NT | 1N/1W-4R1 | 2N/1W-30J1 | 2N/1W-30K1 | 2N/1W-31D1 | 2N/2W-13P1 | 2N/2W-26B1 | 2N/2W-36J1 | | 1N/1W-7K1 | 1N/1W-29G1 | 1N/2W-11N1 | 1N/2W-13P1 | | TABLE E-2 RADIOASSAY OF GROUND WATER 1963 | | | | | Rodioossoy | y in Pico Curies Per Liter | es Per Liter | | |-------------|---------|----------|----------------------------------|-----------------|----------------------------|--------------|-----------| | Well Number | Somoted | Anoivzed | Suspended Activity | Activity | Dissolved Activity | Activity | Gross | | | | , | Alpho | Beto | Alpho | Beto | Activity | | | | | YGNACIO VALLEY 2-6 (Cont.) | 2-6 (Cont.) | | | | | 2N/2W-27R1 | 7-10-62 | 8-9-62 | | | | | 0 + 3.9 | | 2N/2W-36E1 | 7-10-62 | 8-9-62 | | | | | 0.4 + 4.0 | | | | SAI | SANTA CLARA VALLEY 2-9 (East Bay | Y 2-9 (East Bay | 7 | | | | 4S/IW-21F2 | 9-6-62 | 9-24-62 | 0 + 0.14 | 0 + 4.6 | 0.06 ± 0.16 | 0 + 4.6 | | | 4S/1W-21F2 | 12-5-62 | 12-21-62 | 0 + 0.17 | 2.5 + 4.5 | 0 + 0,16 | 0.4 ± 4.5 | | | 4S/1W-21F2 | 3-7-63 | 3-17-63 | 0.1 ± 0.2 | 8.6 + 4.9 | 0.0 + 0.1 | 16.8 + 5.0 | | | 4S/1W-21F2 | 6-6-63 | 7-28-63 | 0 + 0.1 | 0 + 4.5 | 0 + 0.2 | 9.6 + 4.6 | | | 4S/1W-21M1 | 9-6-62 | 9-24-62 | 0 + 0.19 | 0 + 4.5 | 0 + 0.18 | 0 + 4.6 | | | 48/1W-21M1 | 12-5-62 | 12-21-62 | 0 + 0.18 | | 0 + 0.20 | , , , , 6 | | # TABLE E-2 RADIOASSAY OF GROUND WATER 1963 | | | | | Rodioossoy | y in Pico Curies Per Liter | es Per Liter | | |-------------|---------|----------|-----------------------------------|------------|----------------------------|--------------|-----------| | Well Number | Samoled | Anglyzed | Suspended Activity | Activity | | Activity | Gross | | | | | Aipha | Beto | Alpho | Beto | Activity | | | - | SANTA | SANTA CLARA VALLEY 2-9 (East Bay) | | (Cont.) | | | | 4S/IW-21M1 | 3-7-63 | 3-17-63 | 0.0 + 0.1 | 11.7 ± 4.9 | 0.0 + 0.1 | 32.2 + 5.2 | | | 4S/lw-2lml | 6-6-63 | 7-28-63 | 0 + 0.1 | 0.6 + 4.6 | 0.2 + 0.2 | 1.0 + 4.6 | | | 6S/1E-7C1 | 8-62 | 10-8-62 | | | | | 1.8 + 3.3 | | 6S/1E-21G1 | 8-62 | 10-8-62 | | | | | 0 + 3.3 | | 6S/1W-11B1 | 8-62 | 10-8-62 | | | | | 0 + 3.3 | | 6S/1W-14E1 | 8-62 | 10-8-62 | | | | | 0 + 3.3 | | 6S/1W-16A1 | 8-62 | 10-8-62 | | | | | 0 + 3.4 | | 6S/1W-17N2 | 8-62 | 10-8-62 | | | | | 0 + 3.4 | | 6S/1W-26D2 | 9-13-62 | 10-8-62 | | | | | 2.0 + 3.3 | | 6S/1W-28R1 | 8-62 | 10-8-62 | | | | | 0 + 3.3 | | 6S/1W-29C1 | 8-62 | 10-8-62 | | | | | 0 + 3.2 | | 6S/1W-30M1 | 8-62 | 10-8-62 | | | | | 0 + 3.4 | | 6S/2W-9H1 | 8-62 | 10-8-62 | | | | | 0 + 3.3 | | | | | | | | | | TABLE E-2 RADIOASSAY OF GROUND WATER 1963 | | Date | Date | | Rodioosso | Radioassay in Pico Curies Per Lifer | es Per Lifer | | |-------------|---------|----------|-----------------------|-------------------------------------|-------------------------------------|--------------|-------------| | Well Number | Sampled | Analyzed | Suspended Activity | Activity | Dissolved Activity | Activity | Gross | | | | | Alpha | Beta | Alpho | Beto | Activity | | | | | | | | | | | | | SANTA | CLARA VALLEY 2- | CLARA VALLEY 2-9 (East Bay) (Cont.) | Cont.) | | | | 6S/2W-9K2 | 8-62 | 10-8-62 | | | | | 0 + 3.2 | | 6S/2W-20N1 | 8-62 | 10-8-62 | | | | | 0 + 3.1 | | 6S/2W-21A | 8-62 | 10-8-62 | | | | | 0 + 3.2 | | 6S/2W-24M3 | 8-62 | 10-8-62 | | | | | 0 + 3.4 | | 6S/2W-29D2 | 8-62 | 10-8-62 | | | | | 0 + 3.2 | | 6S/2W-34M1 | 8-62 | 10-8-62 | | | | | 0 + 3.2 | | 6S/2W-36H2 | 8-62 | 10-8-62 | | | | | 0 + 3.3 | | 7S/1W-5L | 8-62 | 10-8-62 | | | | | 0 + 3.1 | | | | | | | | | | | | | | LIVERMORE VALLEY 2-10 | ALLEY 2-10 | | | | | 2S/2W-27K1 | 4-11-62 | 5-11-62 | | | | | 0 + 4.0 | | 2S/2W-35G2 | 4-11-62 | 5-11-62 | | | | | 0 + 3.84 | | 3S/2E-8H1 | 4-11-62 | 5-11-62 | | | | | 0 + 3.8 | | 4S/1E-3K1 | 4-4-62 | 5-11-62 | | | | | 0 + 3.9 | | 4S/1E-10G1 | 4-10-62 | 5-11-62 | | | | | 1.28 ± 4.2 | | 4S/1E-10H1 | 4-10-62 | 5-11-62 | | | | | 36.31 ± 4.6 | ### RADIOASSAY OF GROUND WATER 1963 | | | | | Rodioossoy | in Pico Curies Per Liter | es Per Liter | | |-------------|---------|----------|--------------------------------|---------------|--------------------------|--------------|-----------| | Well Number | Sampled | Analyzed | Suspended A | Activity | Dissolved Activity | Activity | Gross | | | | | Alpho | Beto | Alpha | Beta | Activity | | | | 51 | CENTRAL COASTAL REGION (No. 3) | EGION (No. 3) | | | | | | | | PAJARO VALLEY 3-2 | LEY 3-2 | | | | | 12S/2E-30E1 | 7-23-62 | 10-22-62 | | | | | 0 + 3.4 | | 12S/2E-30N1 | 7-23-62 | 10-8-62 | | - | | | 0 + 3.4 | | 12S/2E-31C1 | 7-23-62 | 10-8-62 | | | | | 0 + 3.3 | | 12S/2E-31Kl | 7-24-62 | 10-8-62 | | | | | 0 + 3.4 | | 12S/2E-32C1 | 7-24-62 | 9-26-62 | | | | | 5.1 + 3.5 | | 13S/1E-1A1 | 7-23-62 | 10-8-62 | | | | | 0 + 3.4 | | 13S/2E-6E2 | 7-24-62 | 9-26-62 | | | | | 4.2 + 3.5 | | 13S/2E-1K1 | 7-31-62 | 9-26-62 | | | | | 1.6 ± 3.5 | | 13S/2E-10J1 | 7-31-62 | 9-26-62 | SALINAS VALLEY 3-4 | LEY 3-4 | | | 0 + 3.4 | | | | | CARMEL VALLEY 3-7 | LEY 3-7 | | | | | 15S/1E-22Cl | 7-11-62 | 9-26-62 | | | | | 0 + 3.4 | | 15S/1E-23G1 | 7-11-62 | 9-26-62 | | | | | 0 + 3.4 | | | | | | | | | | TABLE E-2 RADIOASSAY OF GROUND WATER 1963 | | Gross | Activity | | 3.3 + 3.9 | 1.6 + 3.4 | 0 + 3.5 | 0 + 3.4 | 3.2 + 3.4 | 2.1 + 3.4 | 0.1 + 3.4 | 0 + 3.3 | | |-------------------------------------|--------------------|----------|---------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--| | es Per Liter | Activity | Beto | | | | | | | | | | | | Radioassay in Pica Curies Per Liter | Dissolved Activity | Alpho | | | | | | | | | | | | Rodioosso | | Beta | 3-7 (Cont.) | | | | | | | | | | | | Suspended Activity | Alpha | CARMEL VALLEY 3-7 (Cont.) | | | | | | | | | | | | Analyzed | | | 9-26-62 | 9-26-62 | 9-26-62 | 9-26-62 | 9-26-62 | 9-26-62 | 9-26-62 | 9-26-62 | | | 0 | Sampled | | | 7-11-62 | 7-10-62 | 7-10-62 | 7-10-62 | 7-11-62 | 7-10-62 | 7-9-62 | 7-11-62 | | | | Well Number | | | 15S/1E-26N2 | 16S/1E-16L1 | 16S/1E-16N1 | 16S/1E-17G1 | 16S/1E-18K1 | 16S/1E-23F1 | 16S/1E-25B1 | 16S/IW-13L2 | | SACRAMENTO RIVER AT COLLINSVILLE SUISUN BAY AT BENICIA ARSENAL 88 RUSSIAN RIVER NEAR HOPLAND 89 NAVARRO RIVER NEAR HOPLAND 80 NAVARRO RIVER NEAR NAVARRO 99 GUALATA RIVER NEAR HOUTH 99 GUSLAN RIVER NEAR HOUTH 90 GUALATA RIVER, SOUTH FORK, NEAR ANNAROLIS 10 RUSSIAN RIVER AEAT GUERNEVILLE 10 RUSSIAN RIVER, BAST FORK, AT POT VALLEY FOWENHOUSE 100 RUSSIAN RIVER, BAST FORK, AT POT VALLEY FOWENHOUSE 101 SALINAS RIVER NEAR SPECKELS 103 SALINAS RIVER NEAR SPECKELS 104 SALINAS RIVER NEAR SPECKELS 105 RAIDEN RIVER NEAR SERVECKELS HADENOR 105 REITON 105 REITON 105 REITON RIVER NEAR BEAR VALLE 105 CARDEL RIVER AT ROBES DEL RIO 104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER RIVER AT ROBES DEL RIO 104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER AT ROBES DEL RIO 104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER AT ROBES DEL RIO 104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER AT ROBES DEL RIO 104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER RIVER AT ROBES DEL RIO 104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER RIVER AT ROBES DEL RIO 104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER RIVER AT ROBES DEL RIO
104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER RIVER AT ROBES DEL RIO 104 RIVER SERVE NEAR MADRONE 105 RAIDEN RIVER RIV ## Foldout too large for digitization May be added at a later date ### GROUND WAT ### CENTRA ### NORTH COASTAL REGION | 1-14.00 | Potter Valley | |---------|-------------------| | 1-15.00 | Ukiah Valley | | 1-16.00 | Sanel Valley | | 1-17.00 | Alexander Valley | | 1-18.00 | Santa Rosa Valley | | 1-18.01 | Santa Rosa Area | | 1-18.02 | Healdsburg Area | | 1-98.00 | Lower Russian Riv | | SAN | FRANCISCO BAY REGION | |---------|----------------------| | | | | 2-1.00 | Petaluma Valley | | 2-2.00 | Napa-Sonoma Valle | | 2-2.01 | Napa Valley | | 2-2.02 | Sonoma Valley | | 2-3.00 | Suisun-Fairfield | | 2-5.00 | Clayton Valley | | 2-6.00 | Ygnacio Valley | | 2-9.00 | Santa Clara Valle | | 2-9.01 | East Bay Area | | 2-9.02 | South Bay Area | | 2-10.00 | Livermore Valley | | 2-22.00 | Half Moon Bay Ter | | 2-24.00 | San Gregorio Vall | | 2-26.00 | Pescadero Valley | ### Foldout too large for digitization May be added at a later date ### SANEL VALLEY (1-16.00) MENDOCINO COUNTY WELL I3 N/IIW - 18 EI, M.D.B. & M. enound surface Elevation 490' ### SONOMA COUNTY (1-18.00) , SONOMA COUN ISA AREA (I-18.01) 8W-13R1, M.D.8. 8 M. SURFACE ELEVATION 116' EASUREMENTS MADE AT INTERVALS R MORE. > STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES BAY AREA BRANCH HYDROLOGIC DATA CENTRAL COASTAL AREA FLUCTUATION OF WATER LEVEL IN WELLS NORTH COASTAL REGION 1963 ### UKIAH VALLEY (1-15.00) MENDOCINO COUNTY WELL ISN/12W-8LI, M.D.B. & M Þ 4 ۵ S O ď > 0 ### SANEL VALLEY (1-16.00) MENDOCINO COUNTY WELLISN/IIW - IBEI, M.D.B. & M. ### SANTA ROSA VALLEY, SONOMA COUNTY (1-18.00) SANTA ROSA AREA (1-18.01) WELL 6N/8W-13R1, M.D.B. & M. GROUNG SURFACE ELEVATION 116 CONNECTS MEASUREMENTS MADE AT INTERVALS OF A YEAR OR MORE > STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES BAY AREA BRANCH HYDROLOGIC DATA CENTRAL COASTAL AREA FLUCTUATION OF WATER LEVEL IN WELLS NORTH COASTAL REGION 1963 ### Foldout too large for digitization for digitization May be added at a later date ### THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL JUN 6 1969 101 1 1983 RECHARGED JUN 6 JUN 11 REC'D SEP 25 1972 JUN 21 REC'D VAP 1 4 1974 MAY 21 REC'D AGT 26 1977 NOV + REC'D MAR 19 1983 LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS Book Slip-25m-6,'66(G3855s4)458 Nº 482505 California. Dept. of Water Resources. Bulletin. PHYSICAL SCIENCES LIBRARY TC82]₄ C2 A2 no.130:63 v.3 LIBRARY UNIVERSITY OF CALIFORNIA DAVIS 3 1175 00670 0168 Call Number: TC824 C2 A2 no.130:63 water Resources. Bulletin. Call Number: TC824 C2 A2 no.20:63